Cargando…
ECG Identification For Personal Authentication Using LSTM-Based Deep Recurrent Neural Networks
Securing personal authentication is an important study in the field of security. Particularly, fingerprinting and face recognition have been used for personal authentication. However, these systems suffer from certain issues, such as fingerprinting forgery, or environmental obstacles. To address for...
Autores principales: | Kim, Beom-Hun, Pyun, Jae-Young |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7309053/ https://www.ncbi.nlm.nih.gov/pubmed/32485827 http://dx.doi.org/10.3390/s20113069 |
Ejemplares similares
-
Deep Convolutional Generative Adversarial Network with LSTM for ECG Denoising
por: Wang, Huidong, et al.
Publicado: (2023) -
Deep Recurrent Neural Networks for Human Activity Recognition
por: Murad, Abdulmajid, et al.
Publicado: (2017) -
An Effective LSTM Recurrent Network to Detect Arrhythmia on Imbalanced ECG Dataset
por: Gao, Junli, et al.
Publicado: (2019) -
Intelligent Feature Selection for ECG-Based Personal Authentication Using Deep Reinforcement Learning
por: Baek, Suwhan, et al.
Publicado: (2023) -
ECG signal classification based on deep CNN and BiLSTM
por: Cheng, Jinyong, et al.
Publicado: (2021)