Cargando…
Bayesian Sigmoid-Type Time Series Forecasting with Missing Data for Greenhouse Crops
This paper follows an integrated approach of Internet of Things based sensing and machine learning for crop growth prediction in agriculture. A Dynamic Bayesian Network (DBN) relates crop growth associated measurement data to environmental control data via hidden states. The measurement data, having...
Autores principales: | Kocian, Alexander, Carmassi, Giulia, Cela, Fatjon, Incrocci, Luca, Milazzo, Paolo, Chessa, Stefano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7309099/ https://www.ncbi.nlm.nih.gov/pubmed/32517314 http://dx.doi.org/10.3390/s20113246 |
Ejemplares similares
-
Arbuscular Mycorrhizal Fungi Increase Nutritional Quality of Soilless Grown Lettuce while Overcoming Low Phosphorus Supply
por: Cela, Fatjon, et al.
Publicado: (2022) -
Applied Bayesian forecasting and time series analysis
por: Pole, Andy, et al.
Publicado: (1994) -
Applied Bayesian forecasting and times series analysis /
por: Pole, Andy
Publicado: (1994) -
Managing diseases in greenhouse crops /
por: Jarvis, W. R.
Publicado: (1992) -
Modeling and control of greenhouse crop growth
por: Rodríguez, Francisco, et al.
Publicado: (2015)