Cargando…
NLP-Based Approach for Predicting HMI State Sequences Towards Monitoring Operator Situational Awareness
A novel approach presented herein transforms the Human Machine Interface (HMI) states, as a pattern of visual feedback states that encompass both operator actions and process states, from a multi-variate time-series to a natural language processing (NLP) modeling domain. The goal of this approach is...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7309108/ https://www.ncbi.nlm.nih.gov/pubmed/32517145 http://dx.doi.org/10.3390/s20113228 |
Sumario: | A novel approach presented herein transforms the Human Machine Interface (HMI) states, as a pattern of visual feedback states that encompass both operator actions and process states, from a multi-variate time-series to a natural language processing (NLP) modeling domain. The goal of this approach is to predict operator response patterns for [Formula: see text] time-step window given [Formula: see text] past HMI state patterns. The NLP approach offers the possibility of encoding (semantic) contextual relations within HMI state patterns. Towards which, a technique for framing raw HMI data for supervised training using sequence-to-sequence (seq2seq) deep-learning machine translation algorithms is presented. In addition, a custom Seq2Seq convolutional neural network (CNN) NLP model based on current state-of-the-art design elements such as attention, is compared against a standard recurrent neural network (RNN) based NLP model. Results demonstrate comparable effectiveness of both the designs of NLP models evaluated for modeling HMI states. RNN NLP models showed higher ([Formula: see text]) forecast accuracy, in general for both in-sample and out-of-sample test datasets. However, custom CNN NLP model showed higher ([Formula: see text]) validation accuracy indicative of less over-fitting with the same amount of available training data. The real-world application of the proposed NLP modeling of industrial HMIs, such as in power generating stations control rooms, aviation (cockpits), and so forth, is towards the realization of a non-intrusive operator situational awareness monitoring framework through prediction of HMI states. |
---|