Cargando…
Accelerated Tests on Si and SiC Power Transistors with Thermal, Fastand Ultra-Fast Neutrons
Neutron test campaigns on silicon (Si) and silicon carbide (SiC) power MOSFETs and IGBTs were conducted at the TRIGA (Training, Research, Isotopes, General Atomics) Mark II (Pavia, Italy) nuclear reactor and ChipIr-ISIS Neutron and Muon Source (Didcot, U.K.) facility. About 2000 power transistors ma...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7309113/ https://www.ncbi.nlm.nih.gov/pubmed/32466560 http://dx.doi.org/10.3390/s20113021 |
_version_ | 1783549149914857472 |
---|---|
author | Principato, Fabio Altieri, Saverio Abbene, Leonardo Pintacuda, Francesco |
author_facet | Principato, Fabio Altieri, Saverio Abbene, Leonardo Pintacuda, Francesco |
author_sort | Principato, Fabio |
collection | PubMed |
description | Neutron test campaigns on silicon (Si) and silicon carbide (SiC) power MOSFETs and IGBTs were conducted at the TRIGA (Training, Research, Isotopes, General Atomics) Mark II (Pavia, Italy) nuclear reactor and ChipIr-ISIS Neutron and Muon Source (Didcot, U.K.) facility. About 2000 power transistors made by STMicroelectronics were tested in all the experiments. Tests with thermal and fast neutrons (up to about 10 MeV) at the TRIGA Mark II reactor showed that single-event burnout (SEB) failures only occurred at voltages close to the rated drain-source voltage. Thermal neutrons did not induce SEB, nor degradation in the electrical parameters of the devices. SEB failures during testing at ChipIr with ultra-fast neutrons (1-800 MeV) were evaluated in terms of failure in time (FIT) versus derating voltage curves according to the JEP151 procedure of the Joint Electron Device Engineering Council (JEDEC). These curves, even if scaled with die size and avalanche voltage, were strongly linked to the technological processes of the devices, although a common trend was observed that highlighted commonalities among the failures of different types of MOSFETs. In both experiments, we observed only SEB failures without single-event gate rupture (SEGR) during the tests. None of the power devices that survived the neutron tests were degraded in their electrical performances. A study of the worst-case bias condition (gate and/or drain) during irradiation was performed. |
format | Online Article Text |
id | pubmed-7309113 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-73091132020-06-25 Accelerated Tests on Si and SiC Power Transistors with Thermal, Fastand Ultra-Fast Neutrons Principato, Fabio Altieri, Saverio Abbene, Leonardo Pintacuda, Francesco Sensors (Basel) Article Neutron test campaigns on silicon (Si) and silicon carbide (SiC) power MOSFETs and IGBTs were conducted at the TRIGA (Training, Research, Isotopes, General Atomics) Mark II (Pavia, Italy) nuclear reactor and ChipIr-ISIS Neutron and Muon Source (Didcot, U.K.) facility. About 2000 power transistors made by STMicroelectronics were tested in all the experiments. Tests with thermal and fast neutrons (up to about 10 MeV) at the TRIGA Mark II reactor showed that single-event burnout (SEB) failures only occurred at voltages close to the rated drain-source voltage. Thermal neutrons did not induce SEB, nor degradation in the electrical parameters of the devices. SEB failures during testing at ChipIr with ultra-fast neutrons (1-800 MeV) were evaluated in terms of failure in time (FIT) versus derating voltage curves according to the JEP151 procedure of the Joint Electron Device Engineering Council (JEDEC). These curves, even if scaled with die size and avalanche voltage, were strongly linked to the technological processes of the devices, although a common trend was observed that highlighted commonalities among the failures of different types of MOSFETs. In both experiments, we observed only SEB failures without single-event gate rupture (SEGR) during the tests. None of the power devices that survived the neutron tests were degraded in their electrical performances. A study of the worst-case bias condition (gate and/or drain) during irradiation was performed. MDPI 2020-05-26 /pmc/articles/PMC7309113/ /pubmed/32466560 http://dx.doi.org/10.3390/s20113021 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Principato, Fabio Altieri, Saverio Abbene, Leonardo Pintacuda, Francesco Accelerated Tests on Si and SiC Power Transistors with Thermal, Fastand Ultra-Fast Neutrons |
title | Accelerated Tests on Si and SiC Power Transistors with Thermal, Fastand Ultra-Fast Neutrons |
title_full | Accelerated Tests on Si and SiC Power Transistors with Thermal, Fastand Ultra-Fast Neutrons |
title_fullStr | Accelerated Tests on Si and SiC Power Transistors with Thermal, Fastand Ultra-Fast Neutrons |
title_full_unstemmed | Accelerated Tests on Si and SiC Power Transistors with Thermal, Fastand Ultra-Fast Neutrons |
title_short | Accelerated Tests on Si and SiC Power Transistors with Thermal, Fastand Ultra-Fast Neutrons |
title_sort | accelerated tests on si and sic power transistors with thermal, fastand ultra-fast neutrons |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7309113/ https://www.ncbi.nlm.nih.gov/pubmed/32466560 http://dx.doi.org/10.3390/s20113021 |
work_keys_str_mv | AT principatofabio acceleratedtestsonsiandsicpowertransistorswiththermalfastandultrafastneutrons AT altierisaverio acceleratedtestsonsiandsicpowertransistorswiththermalfastandultrafastneutrons AT abbeneleonardo acceleratedtestsonsiandsicpowertransistorswiththermalfastandultrafastneutrons AT pintacudafrancesco acceleratedtestsonsiandsicpowertransistorswiththermalfastandultrafastneutrons |