Cargando…
Comparison of Deep-Learning and Conventional Machine-Learning Methods for the Automatic Recognition of the Hepatocellular Carcinoma Areas from Ultrasound Images
The emergence of deep-learning methods in different computer vision tasks has proved to offer increased detection, recognition or segmentation accuracy when large annotated image datasets are available. In the case of medical image processing and computer-aided diagnosis within ultrasound images, wh...
Autores principales: | Brehar, Raluca, Mitrea, Delia-Alexandrina, Vancea, Flaviu, Marita, Tiberiu, Nedevschi, Sergiu, Lupsor-Platon, Monica, Rotaru, Magda, Badea, Radu Ioan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7309124/ https://www.ncbi.nlm.nih.gov/pubmed/32485986 http://dx.doi.org/10.3390/s20113085 |
Ejemplares similares
-
Hepatocellular Carcinoma Recognition from Ultrasound Images Using Combinations of Conventional and Deep Learning Techniques
por: Mitrea, Delia-Alexandrina, et al.
Publicado: (2023) -
Hepatocellular Carcinoma Automatic Diagnosis within CEUS and B-Mode Ultrasound Images Using Advanced Machine Learning Methods
por: Mitrea, Delia, et al.
Publicado: (2021) -
Integration of Real-Time Image Fusion in the Robotic-Assisted Treatment of Hepatocellular Carcinoma
por: Radu, Corina, et al.
Publicado: (2020) -
Abdominal Tumor Characterization and Recognition Using Superior-Order Cooccurrence Matrices, Based on Ultrasound Images
por: Mitrea, Delia, et al.
Publicado: (2012) -
Iterative Methods for Obtaining Energy-Minimizing Parametric Snakes with Applications to Medical Imaging
por: Mitrea, Alexandru Ioan, et al.
Publicado: (2012)