Cargando…
Adaptive and Efficient Mixture-Based Representation for Range Data
Modern range sensors generate millions of data points per second, making it difficult to utilize all incoming data effectively in real time for devices with limited computational resources. The Gaussian mixture model (GMM) is a convenient and essential tool commonly used in many research domains. In...
Autores principales: | Cao, Minghe, Wang, Jianzhong, Ming, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7309127/ https://www.ncbi.nlm.nih.gov/pubmed/32521794 http://dx.doi.org/10.3390/s20113272 |
Ejemplares similares
-
Multi-Integration Time Adaptive Selection Method for Superframe High-Dynamic-Range Infrared Imaging Based on Grayscale Information
por: Tao, Xingyu, et al.
Publicado: (2022) -
Mixtures of Conditional Gaussian Scale Mixtures Applied to Multiscale Image Representations
por: Theis, Lucas, et al.
Publicado: (2012) -
Mixture-of-Experts Variational Autoencoder for clustering and generating from similarity-based representations on single cell data
por: Kopf, Andreas, et al.
Publicado: (2021) -
State-dependent representations of mixtures by the olfactory bulb
por: Adefuin, Aliya Mari, et al.
Publicado: (2022) -
Adaptive filtering of microarray gene expression data based on Gaussian mixture decomposition
por: Marczyk, Michal, et al.
Publicado: (2013)