Cargando…
Development and validation of phenotype classifiers across multiple sites in the observational health data sciences and informatics network
OBJECTIVE: Accurate electronic phenotyping is essential to support collaborative observational research. Supervised machine learning methods can be used to train phenotype classifiers in a high-throughput manner using imperfectly labeled data. We developed 10 phenotype classifiers using this approac...
Autores principales: | Kashyap, Mehr, Seneviratne, Martin, Banda, Juan M, Falconer, Thomas, Ryu, Borim, Yoo, Sooyoung, Hripcsak, George, Shah, Nigam H |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7309227/ https://www.ncbi.nlm.nih.gov/pubmed/32374408 http://dx.doi.org/10.1093/jamia/ocaa032 |
Ejemplares similares
-
Fully connecting the Observational Health Data Science and Informatics (OHDSI) initiative with the world of linked open data
por: Banda, Juan M.
Publicado: (2019) -
Electronic phenotyping with APHRODITE and the Observational Health Sciences and Informatics (OHDSI) data network
por: Banda, Juan M., et al.
Publicado: (2017) -
Characterizing subgroup performance of probabilistic phenotype algorithms within older adults: a case study for dementia, mild cognitive impairment, and Alzheimer’s and Parkinson’s diseases
por: Banda, Juan M, et al.
Publicado: (2023) -
Effect of vocabulary mapping for conditions on phenotype cohorts
por: Hripcsak, George, et al.
Publicado: (2018) -
A survey of extant organizational and computational setups for deploying predictive models in health systems
por: Kashyap, Sehj, et al.
Publicado: (2021)