Cargando…
Stigma, biomarkers, and algorithmic bias: recommendations for precision behavioral health with artificial intelligence
Effective implementation of artificial intelligence in behavioral healthcare delivery depends on overcoming challenges that are pronounced in this domain. Self and social stigma contribute to under-reported symptoms, and under-coding worsens ascertainment. Health disparities contribute to algorithmi...
Autores principales: | Walsh, Colin G, Chaudhry, Beenish, Dua, Prerna, Goodman, Kenneth W, Kaplan, Bonnie, Kavuluru, Ramakanth, Solomonides, Anthony, Subbian, Vignesh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7309258/ https://www.ncbi.nlm.nih.gov/pubmed/32607482 http://dx.doi.org/10.1093/jamiaopen/ooz054 |
Ejemplares similares
-
Ethics and informatics in the age of COVID-19: challenges and recommendations for public health organization and public policy
por: Subbian, Vignesh, et al.
Publicado: (2020) -
Bias in artificial intelligence algorithms and recommendations for mitigation
por: Nazer, Lama H., et al.
Publicado: (2023) -
An end-to-end deep learning architecture for extracting protein–protein interactions affected by genetic mutations
por: Tran, Tung, et al.
Publicado: (2018) -
Artificial intelligence, bias and clinical safety
por: Challen, Robert, et al.
Publicado: (2019) -
Humans inherit artificial intelligence biases
por: Vicente, Lucía, et al.
Publicado: (2023)