Cargando…
Adapting and evaluating a deep learning language model for clinical why-question answering
OBJECTIVES: To adapt and evaluate a deep learning language model for answering why-questions based on patient-specific clinical text. MATERIALS AND METHODS: Bidirectional encoder representations from transformers (BERT) models were trained with varying data sources to perform SQuAD 2.0 style why-que...
Autores principales: | Wen, Andrew, Elwazir, Mohamed Y, Moon, Sungrim, Fan, Jungwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7309262/ https://www.ncbi.nlm.nih.gov/pubmed/32607483 http://dx.doi.org/10.1093/jamiaopen/ooz072 |
Ejemplares similares
-
COVID-19 and Cancer: Questions to Be Answered
por: Hong, Young Seon
Publicado: (2021) -
Leveraging conversational technology to answer common COVID-19 questions
por: McKillop, Mollie, et al.
Publicado: (2021) -
Deep Question Answering for protein annotation
por: Gobeill, Julien, et al.
Publicado: (2015) -
The language of evidence based medicine: Answers to common questions?
por: Degen, Ryan M, et al.
Publicado: (2008) -
Evaluating the Utility of a Large Language Model in Answering Common Patients’ Gastrointestinal Health-Related Questions: Are We There Yet?
por: Lahat, Adi, et al.
Publicado: (2023)