Cargando…

Ackermannian Goodstein Sequences of Intermediate Growth

The original Goodstein process proceeds by writing natural numbers in nested exponential k-normal form, then successively raising the base to [Formula: see text] and subtracting one from the end result. Such sequences always reach zero, but this fact is unprovable in Peano arithmetic. In this paper...

Descripción completa

Detalles Bibliográficos
Autores principales: Fernández-Duque, David, Weiermann, Andreas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7309503/
http://dx.doi.org/10.1007/978-3-030-51466-2_14
Descripción
Sumario:The original Goodstein process proceeds by writing natural numbers in nested exponential k-normal form, then successively raising the base to [Formula: see text] and subtracting one from the end result. Such sequences always reach zero, but this fact is unprovable in Peano arithmetic. In this paper we instead consider notations for natural numbers based on the Ackermann function. We define two new Goodstein processes, obtaining new independence results for [Formula: see text] and [Formula: see text], theories of second order arithmetic related to the existence of Turing jumps.