Cargando…
Ackermannian Goodstein Sequences of Intermediate Growth
The original Goodstein process proceeds by writing natural numbers in nested exponential k-normal form, then successively raising the base to [Formula: see text] and subtracting one from the end result. Such sequences always reach zero, but this fact is unprovable in Peano arithmetic. In this paper...
Autores principales: | Fernández-Duque, David, Weiermann, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7309503/ http://dx.doi.org/10.1007/978-3-030-51466-2_14 |
Ejemplares similares
-
Well-quasi orders in computation, logic, language and reasoning: a unifying concept of proof theory, automata theory, formal languages and descriptive set theory
por: Schuster, Peter, et al.
Publicado: (2020) -
Modern perspectives in Proof Theory
por: Aguilera, J. P., et al.
Publicado: (2023) -
Sequence alignment generation using intermediate sequence search for homology modeling
por: Makigaki, Shuichiro, et al.
Publicado: (2020) -
Intermediate logic
por: Bostock, David
Publicado: (1997) -
Not residually finite groups of intermediate growth, commensurability and non-geometricity
por: Erschler, A G
Publicado: (2002)