Cargando…
The future of skin toxicology testing – Three-dimensional bioprinting meets microfluidics
Over the years, the field of toxicology testing has evolved tremendously from the use of animal models to the adaptation of in vitro testing models. In this perspective article, we aim to bridge the gap between the regulatory authorities who performed the testing and approval of new chemicals and th...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Whioce Publishing Pte. Ltd.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7310273/ https://www.ncbi.nlm.nih.gov/pubmed/32596546 http://dx.doi.org/10.18063/ijb.v5i2.1.237 |
Sumario: | Over the years, the field of toxicology testing has evolved tremendously from the use of animal models to the adaptation of in vitro testing models. In this perspective article, we aim to bridge the gap between the regulatory authorities who performed the testing and approval of new chemicals and the scientists who designed and fabricated these in vitro testing models. An in-depth discussion of existing toxicology testing guidelines for skin tissue models (definition, testing models, principle, and limitations) is first presented to have a good understanding of the stringent requirements that are necessary during the testing process. Next, the ideal requirements of toxicology testing platform (in terms of fabrication, testing, and screening process) are then discussed. We envisioned that the integration of three-dimensional bioprinting within miniaturized microfluidics platform would bring about a paradigm shift in the field of toxicology testing; providing standardization in the fabrication process, accurate, and rapid deposition of test chemicals, real-time monitoring, and high throughput screening for more efficient skin toxicology testing. |
---|