Cargando…

High-resolution, non-invasive animal tracking and reconstruction of local environment in aquatic ecosystems

BACKGROUND: Acquiring high resolution quantitative behavioural data underwater often involves installation of costly infrastructure, or capture and manipulation of animals. Aquatic movement ecology can therefore be limited in taxonomic range and ecological coverage. METHODS: Here we present a novel...

Descripción completa

Detalles Bibliográficos
Autores principales: Francisco, Fritz A, Nührenberg, Paul, Jordan, Alex
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7310323/
https://www.ncbi.nlm.nih.gov/pubmed/32582448
http://dx.doi.org/10.1186/s40462-020-00214-w
Descripción
Sumario:BACKGROUND: Acquiring high resolution quantitative behavioural data underwater often involves installation of costly infrastructure, or capture and manipulation of animals. Aquatic movement ecology can therefore be limited in taxonomic range and ecological coverage. METHODS: Here we present a novel deep-learning based, multi-individual tracking approach, which incorporates Structure-from-Motion in order to determine the 3D location, body position and the visual environment of every recorded individual. The application is based on low-cost cameras and does not require the animals to be confined, manipulated, or handled in any way. RESULTS: Using this approach, single individuals, small heterospecific groups and schools of fish were tracked in freshwater and marine environments of varying complexity. Positional tracking errors as low as 1.09 ± 0.47 cm (RSME) in underwater areas up to 500 m(2) were recorded. CONCLUSIONS: This cost-effective and open-source framework allows the analysis of animal behaviour in aquatic systems at an unprecedented resolution. Implementing this versatile approach, quantitative behavioural analysis can be employed in a wide range of natural contexts, vastly expanding our potential for examining non-model systems and species.