Cargando…
Utilization of machine learning to test the impact of cognitive processing and emotion recognition on the development of PTSD following trauma exposure
BACKGROUND: Though lifetime exposure to traumatic events is significant, only a minority of individuals develops symptoms of posttraumatic stress disorder (PTSD). Post-trauma alterations in neurocognitive and affective functioning are likely to reflect changes in underlying brain networks that are p...
Autores principales: | Augsburger, Mareike, Galatzer-Levy, Isaac R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7310383/ https://www.ncbi.nlm.nih.gov/pubmed/32576245 http://dx.doi.org/10.1186/s12888-020-02728-4 |
Ejemplares similares
-
Bridging a translational gap: using machine learning to improve the prediction of PTSD
por: Karstoft, Karen-Inge, et al.
Publicado: (2015) -
Item Response Model Validation of the German ICD-11 International Trauma Questionnaire for PTSD and CPTSD
por: Christen, Daniel, et al.
Publicado: (2021) -
Utilization of machine learning for prediction of post-traumatic stress: a re-examination of cortisol in the prediction and pathways to non-remitting PTSD
por: Galatzer-Levy, I R, et al.
Publicado: (2017) -
Early PTSD Symptom Trajectories: Persistence, Recovery, and Response to Treatment: Results from the Jerusalem Trauma Outreach and Prevention Study (J-TOPS)
por: Galatzer-Levy, Isaac R., et al.
Publicado: (2013) -
Increased Skin Conductance Response in the Immediate Aftermath of
Trauma Predicts PTSD Risk
por: Hinrichs, Rebecca, et al.
Publicado: (2019)