Cargando…

Cryo-EM structure of the SARS-CoV-2 3a ion channel in lipid nanodiscs

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes the coronavirus disease 2019 (COVID-19). SARS-CoV-2 encodes three putative ion channels: E, 8a, and 3a(1,2). 3a is expressed in SARS patient tissue and anti-3a antibodies are observed in patient plasma(3–6). 3a has...

Descripción completa

Detalles Bibliográficos
Autores principales: Kern, David M., Sorum, Ben, Mali, Sonali S., Hoel, Christopher M., Sridharan, Savitha, Remis, Jonathan P., Toso, Daniel B., Kotecha, Abhay, Bautista, Diana M., Brohawn, Stephen G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7310636/
https://www.ncbi.nlm.nih.gov/pubmed/32587976
http://dx.doi.org/10.1101/2020.06.17.156554
_version_ 1783549394057953280
author Kern, David M.
Sorum, Ben
Mali, Sonali S.
Hoel, Christopher M.
Sridharan, Savitha
Remis, Jonathan P.
Toso, Daniel B.
Kotecha, Abhay
Bautista, Diana M.
Brohawn, Stephen G.
author_facet Kern, David M.
Sorum, Ben
Mali, Sonali S.
Hoel, Christopher M.
Sridharan, Savitha
Remis, Jonathan P.
Toso, Daniel B.
Kotecha, Abhay
Bautista, Diana M.
Brohawn, Stephen G.
author_sort Kern, David M.
collection PubMed
description Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes the coronavirus disease 2019 (COVID-19). SARS-CoV-2 encodes three putative ion channels: E, 8a, and 3a(1,2). 3a is expressed in SARS patient tissue and anti-3a antibodies are observed in patient plasma(3–6). 3a has been implicated in viral release(7), inhibition of autophagy(8), inflammasome activation(9), and cell death(10,11) and its deletion reduces viral titer and morbidity in mice(1), raising the possibility that 3a could be an effective vaccine or therapeutic target(3,12). Here, we present the first cryo-EM structures of SARS-CoV-2 3a to 2.1 Å resolution and demonstrate 3a forms an ion channel in reconstituted liposomes. The structures in lipid nanodiscs reveal 3a dimers and tetramers adopt a novel fold with a large polar cavity that spans halfway across the membrane and is accessible to the cytosol and the surrounding bilayer through separate water- and lipid-filled openings. Electrophysiology and fluorescent ion imaging experiments show 3a forms Ca(2+)-permeable non-selective cation channels. We identify point mutations that alter ion permeability and discover polycationic inhibitors of 3a channel activity. We find 3a-like proteins in multiple Alphacoronavirus and Betacoronavirus lineages that infect bats and humans. These data show 3a forms a functional ion channel that may promote COVID-19 pathogenesis and suggest targeting 3a could broadly treat coronavirus diseases.
format Online
Article
Text
id pubmed-7310636
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-73106362020-06-25 Cryo-EM structure of the SARS-CoV-2 3a ion channel in lipid nanodiscs Kern, David M. Sorum, Ben Mali, Sonali S. Hoel, Christopher M. Sridharan, Savitha Remis, Jonathan P. Toso, Daniel B. Kotecha, Abhay Bautista, Diana M. Brohawn, Stephen G. bioRxiv Article Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes the coronavirus disease 2019 (COVID-19). SARS-CoV-2 encodes three putative ion channels: E, 8a, and 3a(1,2). 3a is expressed in SARS patient tissue and anti-3a antibodies are observed in patient plasma(3–6). 3a has been implicated in viral release(7), inhibition of autophagy(8), inflammasome activation(9), and cell death(10,11) and its deletion reduces viral titer and morbidity in mice(1), raising the possibility that 3a could be an effective vaccine or therapeutic target(3,12). Here, we present the first cryo-EM structures of SARS-CoV-2 3a to 2.1 Å resolution and demonstrate 3a forms an ion channel in reconstituted liposomes. The structures in lipid nanodiscs reveal 3a dimers and tetramers adopt a novel fold with a large polar cavity that spans halfway across the membrane and is accessible to the cytosol and the surrounding bilayer through separate water- and lipid-filled openings. Electrophysiology and fluorescent ion imaging experiments show 3a forms Ca(2+)-permeable non-selective cation channels. We identify point mutations that alter ion permeability and discover polycationic inhibitors of 3a channel activity. We find 3a-like proteins in multiple Alphacoronavirus and Betacoronavirus lineages that infect bats and humans. These data show 3a forms a functional ion channel that may promote COVID-19 pathogenesis and suggest targeting 3a could broadly treat coronavirus diseases. Cold Spring Harbor Laboratory 2021-01-26 /pmc/articles/PMC7310636/ /pubmed/32587976 http://dx.doi.org/10.1101/2020.06.17.156554 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
spellingShingle Article
Kern, David M.
Sorum, Ben
Mali, Sonali S.
Hoel, Christopher M.
Sridharan, Savitha
Remis, Jonathan P.
Toso, Daniel B.
Kotecha, Abhay
Bautista, Diana M.
Brohawn, Stephen G.
Cryo-EM structure of the SARS-CoV-2 3a ion channel in lipid nanodiscs
title Cryo-EM structure of the SARS-CoV-2 3a ion channel in lipid nanodiscs
title_full Cryo-EM structure of the SARS-CoV-2 3a ion channel in lipid nanodiscs
title_fullStr Cryo-EM structure of the SARS-CoV-2 3a ion channel in lipid nanodiscs
title_full_unstemmed Cryo-EM structure of the SARS-CoV-2 3a ion channel in lipid nanodiscs
title_short Cryo-EM structure of the SARS-CoV-2 3a ion channel in lipid nanodiscs
title_sort cryo-em structure of the sars-cov-2 3a ion channel in lipid nanodiscs
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7310636/
https://www.ncbi.nlm.nih.gov/pubmed/32587976
http://dx.doi.org/10.1101/2020.06.17.156554
work_keys_str_mv AT kerndavidm cryoemstructureofthesarscov23aionchannelinlipidnanodiscs
AT sorumben cryoemstructureofthesarscov23aionchannelinlipidnanodiscs
AT malisonalis cryoemstructureofthesarscov23aionchannelinlipidnanodiscs
AT hoelchristopherm cryoemstructureofthesarscov23aionchannelinlipidnanodiscs
AT sridharansavitha cryoemstructureofthesarscov23aionchannelinlipidnanodiscs
AT remisjonathanp cryoemstructureofthesarscov23aionchannelinlipidnanodiscs
AT tosodanielb cryoemstructureofthesarscov23aionchannelinlipidnanodiscs
AT kotechaabhay cryoemstructureofthesarscov23aionchannelinlipidnanodiscs
AT bautistadianam cryoemstructureofthesarscov23aionchannelinlipidnanodiscs
AT brohawnstepheng cryoemstructureofthesarscov23aionchannelinlipidnanodiscs