Cargando…
Prevalence of Chemosensory Dysfunction in COVID-19 Patients: A Systematic Review and Meta-analysis Reveals Significant Ethnic Differences
A significant fraction of people who test positive for COVID-19 have chemosensory deficits. However, the reported prevalence of these deficits in smell and/or taste varies widely, and the reason for the differences between studies is unclear. We determined the pooled prevalence of such chemosensory...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7310651/ https://www.ncbi.nlm.nih.gov/pubmed/32587993 http://dx.doi.org/10.1101/2020.06.15.20132134 |
Sumario: | A significant fraction of people who test positive for COVID-19 have chemosensory deficits. However, the reported prevalence of these deficits in smell and/or taste varies widely, and the reason for the differences between studies is unclear. We determined the pooled prevalence of such chemosensory deficits in a systematic review. We searched the COVID-19 portfolio of the National Institutes of Health for all studies that reported the prevalence of smell and/or taste deficits in patients diagnosed with COVID-19. Forty-two studies reporting on 23,353 patients qualified and were subjected to a systematic review and meta-analysis. Estimated random prevalence of olfactory dysfunction was 38.5%, of taste dysfunction was 30.4% and of overall chemosensory dysfunction was 50.2%. We examined the effects of age, disease severity, and ethnicity on chemosensory dysfunction. The effect of age did not reach significance, but anosmia/hypogeusia decreased with disease severity, and ethnicity was highly significant: Caucasians had a 3-6 times higher prevalence of chemosensory deficits than East Asians. The finding of ethnic differences points to genetic, ethnicity-specific differences of the virus-binding entry proteins in the olfactory epithelium and taste buds as the most likely explanation, with major implications for infectivity, diagnosis and management of the COVID-19 pandemic. |
---|