Cargando…
Precise automatic classification of 46 different pollen types with convolutional neural networks
In palynology, the visual classification of pollen grains from different species is a hard task which is usually tackled by human operators using microscopes. Many industries, including medical and pharmaceutical, rely on the accuracy of this manual classification process, which is reported to be ar...
Autores principales: | Sevillano, Víctor, Holt, Katherine, Aznarte, José L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7310700/ https://www.ncbi.nlm.nih.gov/pubmed/32574174 http://dx.doi.org/10.1371/journal.pone.0229751 |
Ejemplares similares
-
Improving classification of pollen grain images of the POLEN23E dataset through three different applications of deep learning convolutional neural networks
por: Sevillano, Víctor, et al.
Publicado: (2018) -
Automatic Classification for Sagittal Craniofacial Patterns Based on Different Convolutional Neural Networks
por: Li, Haizhen, et al.
Publicado: (2022) -
Optimization of convolutional neural network hyperparameters for automatic classification of adult mosquitoes
por: Motta, Daniel, et al.
Publicado: (2020) -
Automatic Classification Framework of Tongue Feature Based on Convolutional Neural Networks
por: Li, Jiawei, et al.
Publicado: (2022) -
Automatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networks
por: Takiyama, Hirotoshi, et al.
Publicado: (2018)