Cargando…

AutoTuner: High Fidelity and Robust Parameter Selection for Metabolomics Data Processing

[Image: see text] Untargeted metabolomics experiments provide a snapshot of cellular metabolism but remain challenging to interpret due to the computational complexity involved in data processing and analysis. Prior to any interpretation, raw data must be processed to remove noise and to align mass-...

Descripción completa

Detalles Bibliográficos
Autores principales: McLean, Craig, Kujawinski, Elizabeth B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7310949/
https://www.ncbi.nlm.nih.gov/pubmed/32212641
http://dx.doi.org/10.1021/acs.analchem.9b04804
_version_ 1783549463791403008
author McLean, Craig
Kujawinski, Elizabeth B.
author_facet McLean, Craig
Kujawinski, Elizabeth B.
author_sort McLean, Craig
collection PubMed
description [Image: see text] Untargeted metabolomics experiments provide a snapshot of cellular metabolism but remain challenging to interpret due to the computational complexity involved in data processing and analysis. Prior to any interpretation, raw data must be processed to remove noise and to align mass-spectral peaks across samples. This step requires selection of dataset-specific parameters, as erroneous parameters can result in noise inflation. While several algorithms exist to automate parameter selection, each depends on gradient descent optimization functions. In contrast, our new parameter optimization algorithm, AutoTuner, obtains parameter estimates from raw data in a single step as opposed to many iterations. Here, we tested the accuracy and the run-time of AutoTuner in comparison to isotopologue parameter optimization (IPO), the most commonly used parameter selection tool, and compared the resulting parameters’ influence on the properties of feature tables after processing. We performed a Monte Carlo experiment to test the robustness of AutoTuner parameter selection and found that AutoTuner generated similar parameter estimates from random subsets of samples. We conclude that AutoTuner is a desirable alternative to existing tools, because it is scalable, highly robust, and very fast (∼100–1000× speed improvement from other algorithms going from days to minutes). AutoTuner is freely available as an R package through BioConductor.
format Online
Article
Text
id pubmed-7310949
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-73109492020-06-24 AutoTuner: High Fidelity and Robust Parameter Selection for Metabolomics Data Processing McLean, Craig Kujawinski, Elizabeth B. Anal Chem [Image: see text] Untargeted metabolomics experiments provide a snapshot of cellular metabolism but remain challenging to interpret due to the computational complexity involved in data processing and analysis. Prior to any interpretation, raw data must be processed to remove noise and to align mass-spectral peaks across samples. This step requires selection of dataset-specific parameters, as erroneous parameters can result in noise inflation. While several algorithms exist to automate parameter selection, each depends on gradient descent optimization functions. In contrast, our new parameter optimization algorithm, AutoTuner, obtains parameter estimates from raw data in a single step as opposed to many iterations. Here, we tested the accuracy and the run-time of AutoTuner in comparison to isotopologue parameter optimization (IPO), the most commonly used parameter selection tool, and compared the resulting parameters’ influence on the properties of feature tables after processing. We performed a Monte Carlo experiment to test the robustness of AutoTuner parameter selection and found that AutoTuner generated similar parameter estimates from random subsets of samples. We conclude that AutoTuner is a desirable alternative to existing tools, because it is scalable, highly robust, and very fast (∼100–1000× speed improvement from other algorithms going from days to minutes). AutoTuner is freely available as an R package through BioConductor. American Chemical Society 2020-03-26 2020-04-21 /pmc/articles/PMC7310949/ /pubmed/32212641 http://dx.doi.org/10.1021/acs.analchem.9b04804 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle McLean, Craig
Kujawinski, Elizabeth B.
AutoTuner: High Fidelity and Robust Parameter Selection for Metabolomics Data Processing
title AutoTuner: High Fidelity and Robust Parameter Selection for Metabolomics Data Processing
title_full AutoTuner: High Fidelity and Robust Parameter Selection for Metabolomics Data Processing
title_fullStr AutoTuner: High Fidelity and Robust Parameter Selection for Metabolomics Data Processing
title_full_unstemmed AutoTuner: High Fidelity and Robust Parameter Selection for Metabolomics Data Processing
title_short AutoTuner: High Fidelity and Robust Parameter Selection for Metabolomics Data Processing
title_sort autotuner: high fidelity and robust parameter selection for metabolomics data processing
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7310949/
https://www.ncbi.nlm.nih.gov/pubmed/32212641
http://dx.doi.org/10.1021/acs.analchem.9b04804
work_keys_str_mv AT mcleancraig autotunerhighfidelityandrobustparameterselectionformetabolomicsdataprocessing
AT kujawinskielizabethb autotunerhighfidelityandrobustparameterselectionformetabolomicsdataprocessing