Cargando…

Vitamin C Loaded Polyethylene: Synthesis and Properties of Precise Polyethylene with Vitamin C Defects via Acyclic Diene Metathesis Polycondensation

[Image: see text] A polyethylene-like polymer with an in-chain vitamin C group was synthesized by olefin metathesis polymerization. Here, we describe both the synthesis and a comprehensive physical characterization. Because of the olefin metathesis synthesis, the vitamin C groups are equidistantly a...

Descripción completa

Detalles Bibliográficos
Autores principales: Suraeva, Oksana, Champanhac, Carole, Mailänder, Volker, Wurm, Frederik R., Weiss, Henning, Berger, Rüdiger, Mezger, Markus, Landfester, Katharina, Lieberwirth, Ingo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7311085/
https://www.ncbi.nlm.nih.gov/pubmed/32595236
http://dx.doi.org/10.1021/acs.macromol.0c00086
Descripción
Sumario:[Image: see text] A polyethylene-like polymer with an in-chain vitamin C group was synthesized by olefin metathesis polymerization. Here, we describe both the synthesis and a comprehensive physical characterization. Because of the olefin metathesis synthesis, the vitamin C groups are equidistantly arranged in the polyethylene (PE) main chain. Their separation was adjusted to 20 CH(2) units. After hydrogenation, a semicrystalline polymer is obtained that is soluble in polar solvents. Because of its size and steric effect, the vitamin C acts as a chain defect, which is expelled from the crystal lattice, yielding a lamellar crystal with a homogeneous thickness corresponding to the interdefect distance. The physical properties were examined by various methods including differential scanning calorimetry, X-ray scattering, and transmission electron microscopy. We show that vitamin C retains its radical scavenger properties despite being incorporated into a polyethylene chain. Furthermore, we demonstrate that it is degrading in alkaline conditions. To complete its suitability as a biocompatible material, cytotoxicity and cell uptake experiments were performed. We show that the polymer is nontoxic and that it is taken up in nanoparticular form via endocytosis processes into the cytoplasm of cells.