Cargando…

Limits of III–V Nanowire Growth Based on Droplet Dynamics

[Image: see text] Crystal growth of semiconductor nanowires from a liquid droplet depends on the stability of this droplet’s liquid–solid interface. Because of the assisting property of the droplet, growth will be hindered if the droplet is displaced onto the nanowire sidewalls. Using real-time obse...

Descripción completa

Detalles Bibliográficos
Autores principales: Tornberg, Marcus, Maliakkal, Carina B., Jacobsson, Daniel, Dick, Kimberly A., Johansson, Jonas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7311087/
https://www.ncbi.nlm.nih.gov/pubmed/32208728
http://dx.doi.org/10.1021/acs.jpclett.0c00387
_version_ 1783549492897775616
author Tornberg, Marcus
Maliakkal, Carina B.
Jacobsson, Daniel
Dick, Kimberly A.
Johansson, Jonas
author_facet Tornberg, Marcus
Maliakkal, Carina B.
Jacobsson, Daniel
Dick, Kimberly A.
Johansson, Jonas
author_sort Tornberg, Marcus
collection PubMed
description [Image: see text] Crystal growth of semiconductor nanowires from a liquid droplet depends on the stability of this droplet’s liquid–solid interface. Because of the assisting property of the droplet, growth will be hindered if the droplet is displaced onto the nanowire sidewalls. Using real-time observation of such growth by in situ transmission electron microscopy combined with theoretical analysis of the surface energies involved, we observe a reoccurring truncation at the edge of the droplet–nanowire interface. We demonstrate that creating a truncation widens the parameter range for having a droplet on the top facet, which allows continued nanowire growth. Combining experiment and theory provides an explanation for the previously reported truncation phenomenon of the growth interface based only on droplet wetting dynamics. In addition to determining the fundamental limits of droplet-assisted nanowire growth, this allows experimental estimation of the surface tension and the surface energies of the nanowire such as the otherwise metastable wurtzite GaAs {101̅0} facet.
format Online
Article
Text
id pubmed-7311087
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-73110872020-06-24 Limits of III–V Nanowire Growth Based on Droplet Dynamics Tornberg, Marcus Maliakkal, Carina B. Jacobsson, Daniel Dick, Kimberly A. Johansson, Jonas J Phys Chem Lett [Image: see text] Crystal growth of semiconductor nanowires from a liquid droplet depends on the stability of this droplet’s liquid–solid interface. Because of the assisting property of the droplet, growth will be hindered if the droplet is displaced onto the nanowire sidewalls. Using real-time observation of such growth by in situ transmission electron microscopy combined with theoretical analysis of the surface energies involved, we observe a reoccurring truncation at the edge of the droplet–nanowire interface. We demonstrate that creating a truncation widens the parameter range for having a droplet on the top facet, which allows continued nanowire growth. Combining experiment and theory provides an explanation for the previously reported truncation phenomenon of the growth interface based only on droplet wetting dynamics. In addition to determining the fundamental limits of droplet-assisted nanowire growth, this allows experimental estimation of the surface tension and the surface energies of the nanowire such as the otherwise metastable wurtzite GaAs {101̅0} facet. American Chemical Society 2020-03-25 2020-04-16 /pmc/articles/PMC7311087/ /pubmed/32208728 http://dx.doi.org/10.1021/acs.jpclett.0c00387 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Tornberg, Marcus
Maliakkal, Carina B.
Jacobsson, Daniel
Dick, Kimberly A.
Johansson, Jonas
Limits of III–V Nanowire Growth Based on Droplet Dynamics
title Limits of III–V Nanowire Growth Based on Droplet Dynamics
title_full Limits of III–V Nanowire Growth Based on Droplet Dynamics
title_fullStr Limits of III–V Nanowire Growth Based on Droplet Dynamics
title_full_unstemmed Limits of III–V Nanowire Growth Based on Droplet Dynamics
title_short Limits of III–V Nanowire Growth Based on Droplet Dynamics
title_sort limits of iii–v nanowire growth based on droplet dynamics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7311087/
https://www.ncbi.nlm.nih.gov/pubmed/32208728
http://dx.doi.org/10.1021/acs.jpclett.0c00387
work_keys_str_mv AT tornbergmarcus limitsofiiivnanowiregrowthbasedondropletdynamics
AT maliakkalcarinab limitsofiiivnanowiregrowthbasedondropletdynamics
AT jacobssondaniel limitsofiiivnanowiregrowthbasedondropletdynamics
AT dickkimberlya limitsofiiivnanowiregrowthbasedondropletdynamics
AT johanssonjonas limitsofiiivnanowiregrowthbasedondropletdynamics