Cargando…

Autophagic lipid metabolism sustains mTORC1 activity in TSC-deficient neural stem cells

Although mTORC1 negatively regulates autophagy in cultured cells, how autophagy impacts mTORC1 signaling, in particular in vivo, is less clear. Here we show that autophagy supports mTORC1 hyperactivation in NSCs lacking Tsc1, thereby promoting defects in NSC maintenance, differentiation, tumourigene...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Chenran, Haas, Michael A., Yang, Fuchun, Yeo, Syn, Okamoto, Takako, Chen, Song, Wen, Jian, Sarma, Pranjal, Plas, David R., Guan, Jun-Lin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7311104/
https://www.ncbi.nlm.nih.gov/pubmed/32577608
http://dx.doi.org/10.1038/s42255-019-0137-5
_version_ 1783549495882022912
author Wang, Chenran
Haas, Michael A.
Yang, Fuchun
Yeo, Syn
Okamoto, Takako
Chen, Song
Wen, Jian
Sarma, Pranjal
Plas, David R.
Guan, Jun-Lin
author_facet Wang, Chenran
Haas, Michael A.
Yang, Fuchun
Yeo, Syn
Okamoto, Takako
Chen, Song
Wen, Jian
Sarma, Pranjal
Plas, David R.
Guan, Jun-Lin
author_sort Wang, Chenran
collection PubMed
description Although mTORC1 negatively regulates autophagy in cultured cells, how autophagy impacts mTORC1 signaling, in particular in vivo, is less clear. Here we show that autophagy supports mTORC1 hyperactivation in NSCs lacking Tsc1, thereby promoting defects in NSC maintenance, differentiation, tumourigenesis, and the formation of the neurodevelopmental lesion of Tuberous Sclerosis Complex (TSC). Analysing mice that lack Tsc1 and the essential autophagy gene Fip200 in NSCs we find that TSC-deficient cells require autophagy to maintain mTORC1 hyperactivation under energy stress conditions, likely to provide lipids via lipophagy to serve as an alternative energy source for OXPHOS. In vivo, inhibition of lipophagy or its downstream catabolic pathway reverses defective phenotypes caused by Tsc1-null NSCs and reduces tumorigenesis in mouse models. These results reveal a cooperative function of selective autophagy in coupling energy availability with TSC pathogenesis and suggest a potential new therapeutic strategy to treat TSC patients.
format Online
Article
Text
id pubmed-7311104
institution National Center for Biotechnology Information
language English
publishDate 2019
record_format MEDLINE/PubMed
spelling pubmed-73111042020-06-23 Autophagic lipid metabolism sustains mTORC1 activity in TSC-deficient neural stem cells Wang, Chenran Haas, Michael A. Yang, Fuchun Yeo, Syn Okamoto, Takako Chen, Song Wen, Jian Sarma, Pranjal Plas, David R. Guan, Jun-Lin Nat Metab Article Although mTORC1 negatively regulates autophagy in cultured cells, how autophagy impacts mTORC1 signaling, in particular in vivo, is less clear. Here we show that autophagy supports mTORC1 hyperactivation in NSCs lacking Tsc1, thereby promoting defects in NSC maintenance, differentiation, tumourigenesis, and the formation of the neurodevelopmental lesion of Tuberous Sclerosis Complex (TSC). Analysing mice that lack Tsc1 and the essential autophagy gene Fip200 in NSCs we find that TSC-deficient cells require autophagy to maintain mTORC1 hyperactivation under energy stress conditions, likely to provide lipids via lipophagy to serve as an alternative energy source for OXPHOS. In vivo, inhibition of lipophagy or its downstream catabolic pathway reverses defective phenotypes caused by Tsc1-null NSCs and reduces tumorigenesis in mouse models. These results reveal a cooperative function of selective autophagy in coupling energy availability with TSC pathogenesis and suggest a potential new therapeutic strategy to treat TSC patients. 2019-11-11 2019-11 /pmc/articles/PMC7311104/ /pubmed/32577608 http://dx.doi.org/10.1038/s42255-019-0137-5 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Wang, Chenran
Haas, Michael A.
Yang, Fuchun
Yeo, Syn
Okamoto, Takako
Chen, Song
Wen, Jian
Sarma, Pranjal
Plas, David R.
Guan, Jun-Lin
Autophagic lipid metabolism sustains mTORC1 activity in TSC-deficient neural stem cells
title Autophagic lipid metabolism sustains mTORC1 activity in TSC-deficient neural stem cells
title_full Autophagic lipid metabolism sustains mTORC1 activity in TSC-deficient neural stem cells
title_fullStr Autophagic lipid metabolism sustains mTORC1 activity in TSC-deficient neural stem cells
title_full_unstemmed Autophagic lipid metabolism sustains mTORC1 activity in TSC-deficient neural stem cells
title_short Autophagic lipid metabolism sustains mTORC1 activity in TSC-deficient neural stem cells
title_sort autophagic lipid metabolism sustains mtorc1 activity in tsc-deficient neural stem cells
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7311104/
https://www.ncbi.nlm.nih.gov/pubmed/32577608
http://dx.doi.org/10.1038/s42255-019-0137-5
work_keys_str_mv AT wangchenran autophagiclipidmetabolismsustainsmtorc1activityintscdeficientneuralstemcells
AT haasmichaela autophagiclipidmetabolismsustainsmtorc1activityintscdeficientneuralstemcells
AT yangfuchun autophagiclipidmetabolismsustainsmtorc1activityintscdeficientneuralstemcells
AT yeosyn autophagiclipidmetabolismsustainsmtorc1activityintscdeficientneuralstemcells
AT okamototakako autophagiclipidmetabolismsustainsmtorc1activityintscdeficientneuralstemcells
AT chensong autophagiclipidmetabolismsustainsmtorc1activityintscdeficientneuralstemcells
AT wenjian autophagiclipidmetabolismsustainsmtorc1activityintscdeficientneuralstemcells
AT sarmapranjal autophagiclipidmetabolismsustainsmtorc1activityintscdeficientneuralstemcells
AT plasdavidr autophagiclipidmetabolismsustainsmtorc1activityintscdeficientneuralstemcells
AT guanjunlin autophagiclipidmetabolismsustainsmtorc1activityintscdeficientneuralstemcells