Cargando…
Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes
The goal of this study was to evaluate the maturity of current Deep Learning classification techniques for their application in a real maternal-fetal clinical environment. A large dataset of routinely acquired maternal-fetal screening ultrasound images (which will be made publicly available) was col...
Autores principales: | Burgos-Artizzu, Xavier P., Coronado-Gutiérrez, David, Valenzuela-Alcaraz, Brenda, Bonet-Carne, Elisenda, Eixarch, Elisenda, Crispi, Fatima, Gratacós, Eduard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7311420/ https://www.ncbi.nlm.nih.gov/pubmed/32576905 http://dx.doi.org/10.1038/s41598-020-67076-5 |
Ejemplares similares
-
Author Correction: Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes
por: Burgos-Artizzu, Xavier P., et al.
Publicado: (2022) -
Generative Adversarial Networks to Improve Fetal Brain Fine-Grained Plane Classification
por: Montero, Alberto, et al.
Publicado: (2021) -
Ultrasound assessment of fetal cardiac function
por: Crispi, Fàtima, et al.
Publicado: (2015) -
Evaluation of an improved tool for non-invasive prediction of neonatal respiratory morbidity based on fully automated fetal lung ultrasound analysis
por: Burgos-Artizzu, Xavier P., et al.
Publicado: (2019) -
Automatic Quantitative MRI Texture Analysis in Small-for-Gestational-Age Fetuses Discriminates Abnormal Neonatal Neurobehavior
por: Sanz-Cortes, Magdalena, et al.
Publicado: (2013)