Cargando…

A novel device for elimination of cancer cells from blood specimens

Circulating tumor cells (CTCs) are derivatives of solid cancerous lesions that detach from the tumor mass and enter the blood circulation. CTCs are considered to be the precursors of metastasis in several cancer types. They are present in the blood of cancer patients as single cells or clusters, wit...

Descripción completa

Detalles Bibliográficos
Autores principales: Weth, Agnes, Krol, Ilona, Priesner, Kurt, Donato, Cinzia, Pirker, Stefan, Wolf, Christoph, Aceto, Nicola, Baumgartner, Werner
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7311454/
https://www.ncbi.nlm.nih.gov/pubmed/32576883
http://dx.doi.org/10.1038/s41598-020-67071-w
Descripción
Sumario:Circulating tumor cells (CTCs) are derivatives of solid cancerous lesions that detach from the tumor mass and enter the blood circulation. CTCs are considered to be the precursors of metastasis in several cancer types. They are present in the blood of cancer patients as single cells or clusters, with the latter being associated with a higher metastatic potential. Methods to eliminate CTCs from the bloodstream are currently lacking. Here, we took advantage of the lower shear stress-resistance of cancer cells compared to blood cells, and developed a device that can eliminate cancer cells without blood damage. The device consists of an axial pump and a coupled rotating throttle, controllable to prevent local blood flow impairment, yet maintaining a constant shear performance. When processing cancer cells through our device, we observe cancer cell-cluster disruption and viability reduction of single cancer cells, without noticeable effects on human blood cells. When injecting cancer cell-containing samples into tumor-free recipient mice, processed samples fail to generate metastasis. Together, our data show that a selective disruption of cancer cells is possible while preserving blood cells, paving the way towards the development of novel, implantable tools for CTC disruption and metastasis prevention.