Cargando…
Optimising Lockdown Policies for Epidemic Control using Reinforcement Learning: An AI-Driven Control Approach Compatible with Existing Disease and Network Models
There has been intense debate about lockdown policies in the context of Covid-19 for limiting damage both to health and to the economy. We present an AI-driven approach for generating optimal lockdown policies that control the spread of the disease while balancing both health and economic costs. Fur...
Autores principales: | Khadilkar, Harshad, Ganu, Tanuja, Seetharam, Deva P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7311597/ http://dx.doi.org/10.1007/s41403-020-00129-3 |
Ejemplares similares
-
There exists the “smartest” movement rate to control the epidemic rather than “city lockdown”
por: Wang, Qiubao, et al.
Publicado: (2022) -
Taming the spread of an epidemic by lockdown policies
por: Federico, Salvatore, et al.
Publicado: (2021) -
Effectiveness of controlling COVID-19 epidemic by implementing soft lockdown policy and extensive community screening in Taiwan
por: Chan, Ta-Chien, et al.
Publicado: (2022) -
AI-Empowered Data Analytics for Coronavirus Epidemic Monitoring and Control
por: Fong, Simon James, et al.
Publicado: (2020) -
Optimisation of compatibility for improving elongation at break of chitosan/starch films
por: Sun, Kai-qiang, et al.
Publicado: (2019)