Cargando…
Disturbed Resting-State Whole-Brain Functional Connectivity of Striatal Subregions in Bulimia Nervosa
BACKGROUND: Disturbed self-regulation, taste reward, as well as somatosensory and visuospatial processes were thought to drive binge eating and purging behaviors that characterize bulimia nervosa. Although studies have implicated a central role of the striatum in these dysfunctions, there have been...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7311647/ https://www.ncbi.nlm.nih.gov/pubmed/32215560 http://dx.doi.org/10.1093/ijnp/pyaa023 |
Sumario: | BACKGROUND: Disturbed self-regulation, taste reward, as well as somatosensory and visuospatial processes were thought to drive binge eating and purging behaviors that characterize bulimia nervosa. Although studies have implicated a central role of the striatum in these dysfunctions, there have been no direct investigations on striatal functional connectivity in bulimia nervosa from a network perspective. METHODS: We calculated the functional connectivity of striatal subregions based on the resting-state functional Magnetic Resonance Imaging data of 51 bulimia nervosa patients and 53 healthy women. RESULTS: Compared with the healthy women, bulimia nervosa patients showed increased positive functional connectivity in bilateral striatal nuclei and thalamus for nearly all of the striatal subregions, and increased negative functional connectivity in bilateral primary sensorimotor cortex and occipital areas for both ventral striatum and putamen subregions. Only for the putamen subregions, we observed reduced negative functional connectivity in the prefrontal (bilateral superior and middle frontal gyri) and parietal (right inferior parietal lobe and precuneus) areas. Several striatal connectivities with occipital and primary sensorimotor cortex significantly correlated with the severity of bulimia. CONCLUSIONS: The findings indicate bulimia nervosa-related alterations in striatal functional connectivity with the dorsolateral prefrontal cortex supporting self-regulation, the subcortical striatum and thalamus involved in taste reward, as well as the visual occipital and sensorimotor regions mediating body image, which contribute to our understanding of neural circuitry of bulimia nervosa and encourage future therapeutic developments for bulimia nervosa by modulating striatal pathway. |
---|