Cargando…
Lamprey PHB2 maintains mitochondrial stability by tanslocation to the mitochondria under oxidative stress
Before we have reported lamprey PHB2 could enhance the cellular oxidative-stressed tolerance, here the aim was to explore its mechanisms. We used flow cytometry analysis to identify a Lampetra morii homologue of PHB2 (Lm-PHB2) that could significantly decrease the levels of ROS generation in HEK293T...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7311904/ https://www.ncbi.nlm.nih.gov/pubmed/32592929 http://dx.doi.org/10.1016/j.fsi.2020.06.037 |
Sumario: | Before we have reported lamprey PHB2 could enhance the cellular oxidative-stressed tolerance, here the aim was to explore its mechanisms. We used flow cytometry analysis to identify a Lampetra morii homologue of PHB2 (Lm-PHB2) that could significantly decrease the levels of ROS generation in HEK293T cells. According to confocal microscopy observations, Lm-PHB2 contributed to maintain the mitochondrial morphology of HEK293T cells, and then both cellular nuclear location and translocation from the nucleus to mitochondria of Lm-PHB2 were also examined in HEK293T cells under oxidative stress. We also examined the expressions and locations of various Lm-PHB2 deletion mutants and the amino acid mutant by confocal microscopy and the results showed that the translocation of Lm-PHB2 into mitochondria was dependent on the Lm-PHB2(1-50aa) region and the 17th, 48th and 57th three arginines (R) of N-terminal were very critical. In addition, the analyses of QRT-PCR and Western blot demonstrated that Lm-PHB2 increased the expression levels of OPA1 and HAX1 in HEK293T cells treated with H(2)O(2). The analyses of immunofluorescence and immunoprecipitation showed that Lm-PHB2 could interact with OPA1 and HAX1, respectively. The above mentioned results indicate that Lm-PHB2 could assist OPA1 and HAX1 to maintain mitochondrial morphology and decrease ROS levels by the translocation from the nucleus to mitochondria under oxidative stress. |
---|