Cargando…

ID1-Mediated BMP Signaling Pathway Potentiates Glucagon-Like Peptide-1 Secretion in Response to Nutrient Replenishment

Glucagon-like peptide-1 (GLP-1) is a well-known incretin hormone secreted from enteroendocrinal L cells in response to nutrients, such as glucose and dietary fat, and controls glycemic homeostasis. However, the detailed intracellular mechanisms of how L cells control GLP-1 secretion in response to n...

Descripción completa

Detalles Bibliográficos
Autores principales: Jeong, Jae Woong, Kim, Minki, Lee, Jiwoo, Lee, Hae-Kyung, Ko, Younhee, Kim, Hyunkyung, Fang, Sungsoon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7311998/
https://www.ncbi.nlm.nih.gov/pubmed/32481541
http://dx.doi.org/10.3390/ijms21113824
Descripción
Sumario:Glucagon-like peptide-1 (GLP-1) is a well-known incretin hormone secreted from enteroendocrinal L cells in response to nutrients, such as glucose and dietary fat, and controls glycemic homeostasis. However, the detailed intracellular mechanisms of how L cells control GLP-1 secretion in response to nutrients still remain unclear. Here, we report that bone morphogenetic protein (BMP) signaling pathway plays a pivotal role to control GLP-1 secretion in response to nutrient replenishment in well-established mouse enteroendocrinal L cells (GLUTag cells). Nutrient starvation dramatically reduced cellular respiration and GLP-1 secretion in GLUTag cells. Transcriptome analysis revealed that nutrient starvation remarkably reduced gene expressions involved in BMP signaling pathway, whereas nutrient replenishment rescued BMP signaling to potentiate GLP-1 secretion. Transient knockdown of inhibitor of DNA binding (ID)1, a well-known target gene of BMP signaling, remarkably reduced GLP-1 secretion. Consistently, LDN193189, an inhibitor of BMP signaling, markedly reduced GLP-1 secretion in L cells. In contrast, BMP4 treatment activated BMP signaling pathway and potentiated GLP-1 secretion in response to nutrient replenishment. Altogether, we demonstrated that BMP signaling pathway is a novel molecular mechanism to control GLP-1 secretion in response to cellular nutrient status. Selective activation of BMP signaling would be a potent therapeutic strategy to stimulate GLP-1 secretion in order to restore glycemic homeostasis.