Cargando…
EEG Channel-Selection Method for Epileptic-Seizure Classification Based on Multi-Objective Optimization
We present a multi-objective optimization method for electroencephalographic (EEG) channel selection based on the non-dominated sorting genetic algorithm (NSGA) for epileptic-seizure classification. We tested the method on EEG data of 24 patients from the CHB-MIT public dataset. The procedure starts...
Autores principales: | Moctezuma, Luis Alfredo, Molinas, Marta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7312219/ https://www.ncbi.nlm.nih.gov/pubmed/32625054 http://dx.doi.org/10.3389/fnins.2020.00593 |
Ejemplares similares
-
Multi-objective optimization for EEG channel selection and accurate intruder detection in an EEG-based subject identification system
por: Moctezuma, Luis Alfredo, et al.
Publicado: (2020) -
Classification of low-density EEG for epileptic seizures by energy and fractal features based on EMD
por: Moctezuma, Luis Alfredo, et al.
Publicado: (2020) -
Two-dimensional CNN-based distinction of human emotions from EEG channels selected by multi-objective evolutionary algorithm
por: Moctezuma, Luis Alfredo, et al.
Publicado: (2022) -
Towards a minimal EEG channel array for a biometric system using resting-state and a genetic algorithm for channel selection
por: Moctezuma, Luis Alfredo, et al.
Publicado: (2020) -
Automated methodology for optimal selection of minimum electrode subsets for accurate EEG source estimation based on Genetic Algorithm optimization
por: Soler, Andres, et al.
Publicado: (2022)