Cargando…
Improving Clinical Translation of Machine Learning Approaches Through Clinician-Tailored Visual Displays of Black Box Algorithms: Development and Validation
BACKGROUND: Despite the promise of machine learning (ML) to inform individualized medical care, the clinical utility of ML in medicine has been limited by the minimal interpretability and black box nature of these algorithms. OBJECTIVE: The study aimed to demonstrate a general and simple framework f...
Autores principales: | Wongvibulsin, Shannon, Wu, Katherine C, Zeger, Scott L |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7312245/ https://www.ncbi.nlm.nih.gov/pubmed/32515746 http://dx.doi.org/10.2196/15791 |
Ejemplares similares
-
Enabling individualised health in learning healthcare systems
por: Wongvibulsin, Shannon, et al.
Publicado: (2020) -
Clinical risk prediction with random forests for survival, longitudinal, and multivariate (RF-SLAM) data analysis
por: Wongvibulsin, Shannon, et al.
Publicado: (2019) -
Machine learning for psychiatry: getting doctors at the black box?
por: Hedderich, Dennis M., et al.
Publicado: (2020) -
Using realist evaluation to open the black box of knowledge translation: a state-of-the-art review
por: Salter, Katherine L, et al.
Publicado: (2014) -
Impact of Box-Cox Transformation on Machine-Learning Algorithms
por: Blum, Luca, et al.
Publicado: (2022)