Cargando…

Targeted Delivery of Mesenchymal Stem Cell-Derived Nanovesicles for Spinal Cord Injury Treatment

Due to the safety issues and poor engraftment of mesenchymal stem cell (MSC) implantation, MSC-derived exosomes have been spotlighted as an alternative therapy for spinal cord injury (SCI). However, insufficient productivity of exosomes limits their therapeutic potential for clinical application. Mo...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Ju-Ro, Kyung, Jae Won, Kumar, Hemant, Kwon, Sung Pil, Song, Seuk Young, Han, In-Bo, Kim, Byung-Soo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7312698/
https://www.ncbi.nlm.nih.gov/pubmed/32545361
http://dx.doi.org/10.3390/ijms21114185
Descripción
Sumario:Due to the safety issues and poor engraftment of mesenchymal stem cell (MSC) implantation, MSC-derived exosomes have been spotlighted as an alternative therapy for spinal cord injury (SCI). However, insufficient productivity of exosomes limits their therapeutic potential for clinical application. Moreover, low targeting ability of unmodified exosomes is a critical obstacle for their further applications as a therapeutic agent. In the present study, we fabricated macrophage membrane-fused exosome-mimetic nanovesicles (MF-NVs) from macrophage membrane-fused umbilical cord blood-derived MSCs (MF-MSCs) and confirmed their therapeutic potential in a clinically relevant mouse SCI model (controlled mechanical compression injury model). MF-NVs contained larger quantity of ischemic region-targeting molecules compared to normal MSC-derived nanovesicles (N-NVs). The targeting molecules in MF-NVs, which were derived from macrophage membranes, increased the accumulation of MF-NVs in the injured spinal cord after the in vivo systemic injection. Increased accumulation of MF-NVs attenuated apoptosis and inflammation, prevented axonal loss, enhanced blood vessel formation, decreased fibrosis, and consequently, improved spinal cord function. Synthetically, we developed targeting efficiency-potentiated exosome-mimetic nanovesicles and present their possibility of clinical application for SCI.