Cargando…
Convolution- and Attention-Based Neural Network for Automated Sleep Stage Classification
Analyzing polysomnography (PSG) is an effective method for evaluating sleep health; however, the sleep stage scoring required for PSG analysis is a time-consuming effort for an experienced medical expert. When scoring sleep epochs, experts pay attention to find specific signal characteristics (e.g.,...
Autores principales: | Zhu, Tianqi, Luo, Wei, Yu, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7313068/ https://www.ncbi.nlm.nih.gov/pubmed/32532084 http://dx.doi.org/10.3390/ijerph17114152 |
Ejemplares similares
-
Multi-Branch Convolutional Neural Network for Automatic Sleep Stage Classification with Embedded Stage Refinement and Residual Attention Channel Fusion
por: Zhu, Tianqi, et al.
Publicado: (2020) -
An Attention-Guided Spatiotemporal Graph Convolutional Network for Sleep Stage Classification
por: Li, Menglei, et al.
Publicado: (2022) -
Automated fundus ultrasound image classification based on siamese convolutional neural networks with multi-attention
por: Tan, Jiachen, et al.
Publicado: (2023) -
Leveraging Attention-Based Convolutional Neural Networks for Meningioma Classification in Computational Histopathology
por: Sehring, Jannik, et al.
Publicado: (2023) -
Automated Sleep Stages Classification Using Convolutional Neural Network From Raw and Time-Frequency Electroencephalogram Signals: Systematic Evaluation Study
por: Haghayegh, Shahab, et al.
Publicado: (2023)