Cargando…

Respiratory Activity Classification Based on Ballistocardiogram Analysis

Ballistocardiogram signals describe the mechanical activity of the heart. It can be measured by an intelligent mattress in a totally unobtrusive way during periods of rest in bed or sitting on a chair. The BCG signals are highly vulnerable to artefacts such as noise and movement making useful inform...

Descripción completa

Detalles Bibliográficos
Autores principales: Ben Nasr, Mohamed Chiheb, Ben Jebara, Sofia, Otis, Samuel, Abdulrazak, Bessam, Mezghani, Neila
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7313282/
http://dx.doi.org/10.1007/978-3-030-51517-1_7
Descripción
Sumario:Ballistocardiogram signals describe the mechanical activity of the heart. It can be measured by an intelligent mattress in a totally unobtrusive way during periods of rest in bed or sitting on a chair. The BCG signals are highly vulnerable to artefacts such as noise and movement making useful information like respiratory activities difficult to extract. The purpose of this study is to investigate a classification method to distinguish between seven types of respiratory activities such as normal breathing, cough and hold breath. We propose a feature selection method based on a spectral analysis namely spectral flatness measure (SFM) and spectral centroid (SC). The classification is carried out using the nearest neighbor classifier. The proposed method is able to discriminate between the seven classes with the accuracy of 94% which shows its usefulness in context of Telemedicine.