Cargando…
Deep Learning-Based Approach for Atrial Fibrillation Detection
Atrial Fibrillation (AF) is a health-threatening condition, which is a violation of the heart rhythm that can lead to heart-related complications. Remarkable interest has been given to ECG signals analysis for AF detection in an early stage. In this context, we propose an artificial neural network A...
Autores principales: | Khriji, Lazhar, Fradi, Marwa, Machhout, Mohsen, Hossen, Abdulnasir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7313287/ http://dx.doi.org/10.1007/978-3-030-51517-1_9 |
Ejemplares similares
-
Virtual Healthcare Center for COVID-19 Patient Detection Based on Artificial Intelligence Approaches
por: Messaoud, Seifeddine, et al.
Publicado: (2022) -
Deep learning based neural network application for automatic ultrasonic computed tomographic bone image segmentation
por: Marwa, Fradi, et al.
Publicado: (2022) -
Review of Deep Learning-Based Atrial Fibrillation Detection Studies
por: Murat, Fatma, et al.
Publicado: (2021) -
Deep Learning Approaches to Detect Atrial Fibrillation Using Photoplethysmographic Signals: Algorithms Development Study
por: Kwon, Soonil, et al.
Publicado: (2019) -
Contactless facial video recording with deep learning models for the detection of atrial fibrillation
por: Sun, Yu, et al.
Publicado: (2022)