Cargando…

Machine Learning Based Rank Attack Detection for Smart Hospital Infrastructure

In recent years, many technologies were racing to deliver the best service for human being. Emerging Internet of Things (IoT) technologies made birth to the notion of smart infrastructures such as smart grid, smart factories or smart hospitals. These infrastructures rely on interconnected smart devi...

Descripción completa

Detalles Bibliográficos
Autores principales: Said, Abd Mlak, Yahyaoui, Aymen, Yaakoubi, Faicel, Abdellatif, Takoua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7313290/
http://dx.doi.org/10.1007/978-3-030-51517-1_3
Descripción
Sumario:In recent years, many technologies were racing to deliver the best service for human being. Emerging Internet of Things (IoT) technologies made birth to the notion of smart infrastructures such as smart grid, smart factories or smart hospitals. These infrastructures rely on interconnected smart devices collecting real-time data in order to improve existing procedures and systems capabilities. A critical issue in smart infrastructures is the information protection which may be more valuable than physical assets. Therefore, it is extremely important to detect and deter any attacks or breath to the network system for information theft. One of these attacks is the rank attack that is carried out by an intruder node in order to attract legitimate traffic to it, then steal personal data of different persons (both patients and staffs in hospitals). In this paper, we propose an anomaly based rank attack detection system against an IoT network using Support Vector Machines. As a use case, we are interested in the healthcare sector and in particular in smart hospitals which are multifaceted with many challenges such as service resilience, assets interoperability and sensitive information protection. The proposed intrusion detection system (IDS) is implemented and evaluated using Conticki Cooja simulator. Results show a high detection accuracy and low false positive rates.