Cargando…

Rapid Scalable Processing of Tin Oxide Transport Layers for Perovskite Solar Cells

[Image: see text] The development of scalable deposition methods for perovskite solar cell materials is critical to enable the commercialization of this nascent technology. Herein, we investigate the use and processing of nanoparticle SnO(2) films as electron transport layers in perovskite solar cel...

Descripción completa

Detalles Bibliográficos
Autores principales: Smith, Joel A., Game, Onkar S., Bishop, James E., Spooner, Emma L. K., Kilbride, Rachel C., Greenland, Claire, Jayaprakash, Rahul, Alanazi, Tarek I., Cassella, Elena J., Tejada, Alvaro, Chistiakova, Ganna, Wong-Stringer, Michael, Routledge, Thomas J., Parnell, Andrew J., Hammond, Deborah B., Lidzey, David G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7313656/
https://www.ncbi.nlm.nih.gov/pubmed/32596647
http://dx.doi.org/10.1021/acsaem.0c00525
_version_ 1783549983782338560
author Smith, Joel A.
Game, Onkar S.
Bishop, James E.
Spooner, Emma L. K.
Kilbride, Rachel C.
Greenland, Claire
Jayaprakash, Rahul
Alanazi, Tarek I.
Cassella, Elena J.
Tejada, Alvaro
Chistiakova, Ganna
Wong-Stringer, Michael
Routledge, Thomas J.
Parnell, Andrew J.
Hammond, Deborah B.
Lidzey, David G.
author_facet Smith, Joel A.
Game, Onkar S.
Bishop, James E.
Spooner, Emma L. K.
Kilbride, Rachel C.
Greenland, Claire
Jayaprakash, Rahul
Alanazi, Tarek I.
Cassella, Elena J.
Tejada, Alvaro
Chistiakova, Ganna
Wong-Stringer, Michael
Routledge, Thomas J.
Parnell, Andrew J.
Hammond, Deborah B.
Lidzey, David G.
author_sort Smith, Joel A.
collection PubMed
description [Image: see text] The development of scalable deposition methods for perovskite solar cell materials is critical to enable the commercialization of this nascent technology. Herein, we investigate the use and processing of nanoparticle SnO(2) films as electron transport layers in perovskite solar cells and develop deposition methods for ultrasonic spray coating and slot-die coating, leading to photovoltaic device efficiencies over 19%. The effects of postprocessing treatments (thermal annealing, UV ozone, and O(2) plasma) are then probed using structural and spectroscopic techniques to characterize the nature of the np-SnO(2)/perovskite interface. We show that a brief “hot air flow” method can be used to replace extended thermal annealing, confirming that this approach is compatible with high-throughput processing. Our results highlight the importance of interface management to minimize nonradiative losses and provide a deeper understanding of the processing requirements for large-area deposition of nanoparticle metal oxides.
format Online
Article
Text
id pubmed-7313656
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-73136562020-06-24 Rapid Scalable Processing of Tin Oxide Transport Layers for Perovskite Solar Cells Smith, Joel A. Game, Onkar S. Bishop, James E. Spooner, Emma L. K. Kilbride, Rachel C. Greenland, Claire Jayaprakash, Rahul Alanazi, Tarek I. Cassella, Elena J. Tejada, Alvaro Chistiakova, Ganna Wong-Stringer, Michael Routledge, Thomas J. Parnell, Andrew J. Hammond, Deborah B. Lidzey, David G. ACS Appl Energy Mater [Image: see text] The development of scalable deposition methods for perovskite solar cell materials is critical to enable the commercialization of this nascent technology. Herein, we investigate the use and processing of nanoparticle SnO(2) films as electron transport layers in perovskite solar cells and develop deposition methods for ultrasonic spray coating and slot-die coating, leading to photovoltaic device efficiencies over 19%. The effects of postprocessing treatments (thermal annealing, UV ozone, and O(2) plasma) are then probed using structural and spectroscopic techniques to characterize the nature of the np-SnO(2)/perovskite interface. We show that a brief “hot air flow” method can be used to replace extended thermal annealing, confirming that this approach is compatible with high-throughput processing. Our results highlight the importance of interface management to minimize nonradiative losses and provide a deeper understanding of the processing requirements for large-area deposition of nanoparticle metal oxides. American Chemical Society 2020-05-08 2020-06-22 /pmc/articles/PMC7313656/ /pubmed/32596647 http://dx.doi.org/10.1021/acsaem.0c00525 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Smith, Joel A.
Game, Onkar S.
Bishop, James E.
Spooner, Emma L. K.
Kilbride, Rachel C.
Greenland, Claire
Jayaprakash, Rahul
Alanazi, Tarek I.
Cassella, Elena J.
Tejada, Alvaro
Chistiakova, Ganna
Wong-Stringer, Michael
Routledge, Thomas J.
Parnell, Andrew J.
Hammond, Deborah B.
Lidzey, David G.
Rapid Scalable Processing of Tin Oxide Transport Layers for Perovskite Solar Cells
title Rapid Scalable Processing of Tin Oxide Transport Layers for Perovskite Solar Cells
title_full Rapid Scalable Processing of Tin Oxide Transport Layers for Perovskite Solar Cells
title_fullStr Rapid Scalable Processing of Tin Oxide Transport Layers for Perovskite Solar Cells
title_full_unstemmed Rapid Scalable Processing of Tin Oxide Transport Layers for Perovskite Solar Cells
title_short Rapid Scalable Processing of Tin Oxide Transport Layers for Perovskite Solar Cells
title_sort rapid scalable processing of tin oxide transport layers for perovskite solar cells
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7313656/
https://www.ncbi.nlm.nih.gov/pubmed/32596647
http://dx.doi.org/10.1021/acsaem.0c00525
work_keys_str_mv AT smithjoela rapidscalableprocessingoftinoxidetransportlayersforperovskitesolarcells
AT gameonkars rapidscalableprocessingoftinoxidetransportlayersforperovskitesolarcells
AT bishopjamese rapidscalableprocessingoftinoxidetransportlayersforperovskitesolarcells
AT spooneremmalk rapidscalableprocessingoftinoxidetransportlayersforperovskitesolarcells
AT kilbriderachelc rapidscalableprocessingoftinoxidetransportlayersforperovskitesolarcells
AT greenlandclaire rapidscalableprocessingoftinoxidetransportlayersforperovskitesolarcells
AT jayaprakashrahul rapidscalableprocessingoftinoxidetransportlayersforperovskitesolarcells
AT alanazitareki rapidscalableprocessingoftinoxidetransportlayersforperovskitesolarcells
AT cassellaelenaj rapidscalableprocessingoftinoxidetransportlayersforperovskitesolarcells
AT tejadaalvaro rapidscalableprocessingoftinoxidetransportlayersforperovskitesolarcells
AT chistiakovaganna rapidscalableprocessingoftinoxidetransportlayersforperovskitesolarcells
AT wongstringermichael rapidscalableprocessingoftinoxidetransportlayersforperovskitesolarcells
AT routledgethomasj rapidscalableprocessingoftinoxidetransportlayersforperovskitesolarcells
AT parnellandrewj rapidscalableprocessingoftinoxidetransportlayersforperovskitesolarcells
AT hammonddeborahb rapidscalableprocessingoftinoxidetransportlayersforperovskitesolarcells
AT lidzeydavidg rapidscalableprocessingoftinoxidetransportlayersforperovskitesolarcells