Cargando…

Experimental evaluation of stiffness predictions of multiaxial flax fibre composites by classical laminate theory

Despite the good mechanical properties of natural fibre composites, their use in load-bearing components is still limited, which may be due to lack of knowledge and confidence in calculating the performance of the composites by mechanical models. The present study is providing an experimental evalua...

Descripción completa

Detalles Bibliográficos
Autores principales: Ueki, Yosuke, Lilholt, Hans, Madsen, Bo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7313735/
https://www.ncbi.nlm.nih.gov/pubmed/32579569
http://dx.doi.org/10.1371/journal.pone.0234701
_version_ 1783549997067796480
author Ueki, Yosuke
Lilholt, Hans
Madsen, Bo
author_facet Ueki, Yosuke
Lilholt, Hans
Madsen, Bo
author_sort Ueki, Yosuke
collection PubMed
description Despite the good mechanical properties of natural fibre composites, their use in load-bearing components is still limited, which may be due to lack of knowledge and confidence in calculating the performance of the composites by mechanical models. The present study is providing an experimental evaluation of stiffness predictions of multiaxial flax fibre composite by classical laminate theory (CLT). The experimental base is (i) multiaxial flax fibre composites fabricated with two types of biaxial non-crimp fabrics, having a nominal yarn orientation of ±45°, and (ii) uniaxial flax fibre composites fabricated with the same flax yarn as used in the fabrics. The fabricated composites are characterised by volumetric composition, yarn orientation and tensile properties. A fast and easy operational Fast Fibre Orientation (FFO) method is developed to determine the actual yarn orientation in fabrics and composites. It is demonstrated that the FFO method is a robust method, giving repeatable results for yarn orientations, and it can be used both on fabrics and composites. CLT predictions of stiffness of the multiaxial flax fibre composites are shown to be in good agreement with the measured stiffnesses of the composites in three testing directions (0°, 45°, and 90°). The use of the actual yarn orientations measured by the FFO method, instead of the nominal yarn orientations of ±45°, is shown to result in improved CLT predictions of stiffness with a mean deviation between predictions and measurements on 0.2 GPa. Altogether, it is demonstrated that stiffness of multiaxial flax fibre composites can be accurately predicted by CLT, without any fitting constants, based on independently determined stiffness parameters of the related uniaxial flax fibre composite, and based on measured yarn orientations in the flax fibre fabric.
format Online
Article
Text
id pubmed-7313735
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-73137352020-06-26 Experimental evaluation of stiffness predictions of multiaxial flax fibre composites by classical laminate theory Ueki, Yosuke Lilholt, Hans Madsen, Bo PLoS One Research Article Despite the good mechanical properties of natural fibre composites, their use in load-bearing components is still limited, which may be due to lack of knowledge and confidence in calculating the performance of the composites by mechanical models. The present study is providing an experimental evaluation of stiffness predictions of multiaxial flax fibre composite by classical laminate theory (CLT). The experimental base is (i) multiaxial flax fibre composites fabricated with two types of biaxial non-crimp fabrics, having a nominal yarn orientation of ±45°, and (ii) uniaxial flax fibre composites fabricated with the same flax yarn as used in the fabrics. The fabricated composites are characterised by volumetric composition, yarn orientation and tensile properties. A fast and easy operational Fast Fibre Orientation (FFO) method is developed to determine the actual yarn orientation in fabrics and composites. It is demonstrated that the FFO method is a robust method, giving repeatable results for yarn orientations, and it can be used both on fabrics and composites. CLT predictions of stiffness of the multiaxial flax fibre composites are shown to be in good agreement with the measured stiffnesses of the composites in three testing directions (0°, 45°, and 90°). The use of the actual yarn orientations measured by the FFO method, instead of the nominal yarn orientations of ±45°, is shown to result in improved CLT predictions of stiffness with a mean deviation between predictions and measurements on 0.2 GPa. Altogether, it is demonstrated that stiffness of multiaxial flax fibre composites can be accurately predicted by CLT, without any fitting constants, based on independently determined stiffness parameters of the related uniaxial flax fibre composite, and based on measured yarn orientations in the flax fibre fabric. Public Library of Science 2020-06-24 /pmc/articles/PMC7313735/ /pubmed/32579569 http://dx.doi.org/10.1371/journal.pone.0234701 Text en © 2020 Ueki et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Ueki, Yosuke
Lilholt, Hans
Madsen, Bo
Experimental evaluation of stiffness predictions of multiaxial flax fibre composites by classical laminate theory
title Experimental evaluation of stiffness predictions of multiaxial flax fibre composites by classical laminate theory
title_full Experimental evaluation of stiffness predictions of multiaxial flax fibre composites by classical laminate theory
title_fullStr Experimental evaluation of stiffness predictions of multiaxial flax fibre composites by classical laminate theory
title_full_unstemmed Experimental evaluation of stiffness predictions of multiaxial flax fibre composites by classical laminate theory
title_short Experimental evaluation of stiffness predictions of multiaxial flax fibre composites by classical laminate theory
title_sort experimental evaluation of stiffness predictions of multiaxial flax fibre composites by classical laminate theory
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7313735/
https://www.ncbi.nlm.nih.gov/pubmed/32579569
http://dx.doi.org/10.1371/journal.pone.0234701
work_keys_str_mv AT uekiyosuke experimentalevaluationofstiffnesspredictionsofmultiaxialflaxfibrecompositesbyclassicallaminatetheory
AT lilholthans experimentalevaluationofstiffnesspredictionsofmultiaxialflaxfibrecompositesbyclassicallaminatetheory
AT madsenbo experimentalevaluationofstiffnesspredictionsofmultiaxialflaxfibrecompositesbyclassicallaminatetheory