Cargando…
Document-Level Biomedical Relation Extraction Leveraging Pretrained Self-Attention Structure and Entity Replacement: Algorithm and Pretreatment Method Validation Study
BACKGROUND: The most current methods applied for intrasentence relation extraction in the biomedical literature are inadequate for document-level relation extraction, in which the relationship may cross sentence boundaries. Hence, some approaches have been proposed to extract relations by splitting...
Autores principales: | Liu, Xiaofeng, Fan, Jianye, Dong, Shoubin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314385/ https://www.ncbi.nlm.nih.gov/pubmed/32469325 http://dx.doi.org/10.2196/17644 |
Ejemplares similares
-
Document-Level Biomedical Relation Extraction Using Graph Convolutional Network and Multihead Attention: Algorithm Development and Validation
por: Wang, Jian, et al.
Publicado: (2020) -
Document Network Projection in Pretrained Word Embedding Space
por: Gourru, Antoine, et al.
Publicado: (2020) -
Comparison of named entity recognition methodologies in biomedical documents
por: Song, Hye-Jeong, et al.
Publicado: (2018) -
Leveraging word embeddings and medical entity extraction for biomedical dataset retrieval using unstructured texts
por: Wang, Yanshan, et al.
Publicado: (2017) -
Heuristic Attention Representation Learning for Self-Supervised Pretraining
por: Tran, Van Nhiem, et al.
Publicado: (2022)