Cargando…

Structural and chemical trapping of flavin‐oxide intermediates reveals substrate‐directed reaction multiplicity

Though reactive flavin‐N5/C4α‐oxide intermediates can be spectroscopically profiled for some flavin‐assisted enzymatic reactions, their exact chemical configurations are hardly visualized. Structural systems biology and stable isotopic labelling techniques were exploited to correct this stereotypica...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Kuan‐Hung, Lyu, Syue‐Yi, Yeh, Hsien‐Wei, Li, Yi‐Shan, Hsu, Ning‐Shian, Huang, Chun‐Man, Wang, Yung‐Lin, Shih, Hao‐Wei, Wang, Zhe‐Chong, Wu, Chang‐Jer, Li, Tsung‐Lin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314388/
https://www.ncbi.nlm.nih.gov/pubmed/32362037
http://dx.doi.org/10.1002/pro.3879
Descripción
Sumario:Though reactive flavin‐N5/C4α‐oxide intermediates can be spectroscopically profiled for some flavin‐assisted enzymatic reactions, their exact chemical configurations are hardly visualized. Structural systems biology and stable isotopic labelling techniques were exploited to correct this stereotypical view. Three transition‐like complexes, the α‐ketoacid…N5‐FMN(ox) complex (I), the FMN(ox)‐N5‐aloxyl‐C′α(−)‐C4α(+) zwitterion (II), and the FMN‐N5‐ethenol‐N5‐C4α‐epoxide (III), were determined from mandelate oxidase (Hmo) or its mutant Y128F (monooxygenase) crystals soaked with monofluoropyruvate (a product mimic), establishing that N5 of FMN(ox) an alternative reaction center can polarize to an ylide‐like mesomer in the active site. In contrast, four distinct flavin‐C4α‐oxide adducts (IV–VII) from Y128F crystals soaked with selected substrates materialize C4α of FMN an intrinsic reaction center, witnessing oxidation, Baeyer–Villiger/peroxide‐assisted decarboxylation, and epoxidation reactions. In conjunction with stopped‐flow kinetics, the multifaceted flavin‐dependent reaction continuum is physically dissected at molecular level for the first time.