Cargando…
Facial nerve repair utilizing intraoperative repair strategies
OBJECTIVES: To determine whether functional and anatomical outcomes following suture neurorrhaphy are improved by the addition of electrical stimulation with or without the addition of polyethylene glycol (PEG). METHODS: In a rat model of facial nerve injury, complete facial nerve transection and re...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314485/ https://www.ncbi.nlm.nih.gov/pubmed/32596500 http://dx.doi.org/10.1002/lio2.411 |
Sumario: | OBJECTIVES: To determine whether functional and anatomical outcomes following suture neurorrhaphy are improved by the addition of electrical stimulation with or without the addition of polyethylene glycol (PEG). METHODS: In a rat model of facial nerve injury, complete facial nerve transection and repair was performed via (a) suture neurorrhaphy alone, (b) neurorrhaphy with the addition of brief (30 minutes) intraoperative electrical stimulation, or (c) neurorrhaphy with the addition electrical stimulation and PEG. Functional recovery was assessed weekly for 16 weeks. At 16 weeks postoperatively, motoneuron survival, amount of regrowth, and specificity of regrowth were assessed by branch labeling and tissue analysis. RESULTS: The addition of brief intraoperative electrical stimulation improved all functional outcomes compared to suturing alone. The addition of PEG to electrical stimulation impaired this benefit. Motoneuron survival, amount of regrowth, and specificity of regrowth were unaltered at 16 weeks postoperative in all treatment groups. CONCLUSION: The addition of brief intraoperative electrical stimulation to neurorrhaphy in this rodent model shows promising neurological benefit in the surgical repair of facial nerve injury. LEVEL OF EVIDENCE: Animal study. |
---|