Cargando…

Linker-mediated self-assembly of mobile DNA-coated colloids

Developing construction methods of materials tailored for given applications with absolute control over building block placement poses an immense challenge. DNA-coated colloids offer the possibility of realising programmable self-assembly, which, in principle, can assemble almost any structure in eq...

Descripción completa

Detalles Bibliográficos
Autores principales: Xia, Xiuyang, Hu, Hao, Ciamarra, Massimo Pica, Ni, Ran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314559/
https://www.ncbi.nlm.nih.gov/pubmed/32637586
http://dx.doi.org/10.1126/sciadv.aaz6921
Descripción
Sumario:Developing construction methods of materials tailored for given applications with absolute control over building block placement poses an immense challenge. DNA-coated colloids offer the possibility of realising programmable self-assembly, which, in principle, can assemble almost any structure in equilibrium, but remains challenging experimentally. Here, we propose an innovative system of linker-mediated mobile DNA-coated colloids (mDNACCs), in which mDNACCs are bridged by the free DNA linkers in solution, whose two single-stranded DNA tails can bind with specific single-stranded DNA receptors of complementary sequence coated on colloids. We formulate a mean-field theory efficiently calculating the effective interaction between mDNACCs, where the entropy of DNA linkers plays a nontrivial role. Particularly, when the binding between free DNA linkers in solution and the corresponding receptors on mDNACCs is strong, the linker-mediated colloidal interaction is determined by the linker entropy depending on the linker concentration.