Cargando…
Chimeric antigen receptor signaling: Functional consequences and design implications
Chimeric antigen receptor (CAR) T cell therapy has transformed the care of refractory B cell malignancies and holds tremendous promise for many aggressive tumors. Despite overwhelming scientific, clinical, and public interest in this rapidly expanding field, fundamental inquiries into CAR T cell mec...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314561/ https://www.ncbi.nlm.nih.gov/pubmed/32637585 http://dx.doi.org/10.1126/sciadv.aaz3223 |
Sumario: | Chimeric antigen receptor (CAR) T cell therapy has transformed the care of refractory B cell malignancies and holds tremendous promise for many aggressive tumors. Despite overwhelming scientific, clinical, and public interest in this rapidly expanding field, fundamental inquiries into CAR T cell mechanistic functioning are still in their infancy. Because CAR T cells are manufactured from donor T lymphocytes, and because CARs incorporate well-characterized T cell signaling components, it has largely been assumed that CARs signal analogously to canonical T cell receptors (TCRs). However, recent studies demonstrate that many aspects of CAR signaling are unique, distinct from endogenous TCR signaling, and potentially even distinct among various CAR constructs. Thus, rigorous and comprehensive proteomic investigations are required for rational engineering of improved CARs. Here, we review what is known about proximal CAR signaling in T cells, compare it to conventional TCR signaling, and outline unmet challenges to improving CAR T cell therapy. |
---|