Cargando…

Multiscale Graph Grammars Can Generate Cayley Graphs of Groups and Monoids

A graph grammar with parallel replacement of subgraphs, based on the single-pushout approach in graph rewriting, was designed which constructs Cayley graphs of monoids of transformations of a finite set, with permutation groups as a special case. As input, graph-based representations of a finite num...

Descripción completa

Detalles Bibliográficos
Autor principal: Kurth, Winfried
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314706/
http://dx.doi.org/10.1007/978-3-030-51372-6_18
Descripción
Sumario:A graph grammar with parallel replacement of subgraphs, based on the single-pushout approach in graph rewriting, was designed which constructs Cayley graphs of monoids of transformations of a finite set, with permutation groups as a special case. As input, graph-based representations of a finite number of generating transformations have to be specified; they will then correspond to the edge types of the Cayley graph which is the final result of the rewriting process. The grammar has [Formula: see text] rules, where d is the number of generators, and operates at two scale levels. The fine-scale level is the level of elements on which the transformations act and where their composition is calculated by parallel subgraph replacement. The coarse-scale level corresponds to the transformations themselves which are organized in the Cayley graph in a sequential rule application process. Both scale levels are represented in a single graph. The graph grammar was implemented in the programming language XL on the software platform GroIMP, a graph rewriting tool which was originally designed for simulating the growth of plants.