Cargando…
Learning endometriosis phenotypes from patient-generated data
Endometriosis is a systemic and chronic condition in women of childbearing age, yet a highly enigmatic disease with unresolved questions: there are no known biomarkers, nor established clinical stages. We here investigate the use of patient-generated health data and data-driven phenotyping to charac...
Autores principales: | Urteaga, Iñigo, McKillop, Mollie, Elhadad, Noémie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314826/ https://www.ncbi.nlm.nih.gov/pubmed/32596513 http://dx.doi.org/10.1038/s41746-020-0292-9 |
Ejemplares similares
-
Characterizing physiological and symptomatic variation in menstrual cycles using self-tracked mobile-health data
por: Li, Kathy, et al.
Publicado: (2020) -
A predictive model for next cycle start date that accounts for adherence in menstrual self-tracking
por: Li, Kathy, et al.
Publicado: (2021) -
Augmenting the Clinical Data Sources for Enigmatic Diseases: A Cross-Sectional Study of Self-Tracking Data and Clinical Documentation in Endometriosis
por: Ensari, Ipek, et al.
Publicado: (2020) -
Leveraging conversational technology to answer common COVID-19 questions
por: McKillop, Mollie, et al.
Publicado: (2021) -
Dynamical Phenotyping: Using Temporal Analysis of Clinically Collected Physiologic Data to Stratify Populations
por: Albers, D. J., et al.
Publicado: (2014)