Cargando…
Rewriting Theory for the Life Sciences: A Unifying Theory of CTMC Semantics
The Kappa biochemistry and the MØD organo-chemistry frameworks are amongst the most intensely developed applications of rewriting theoretical methods in the life sciences to date. A typical feature of these types of rewriting theories is the necessity to implement certain structural constraints on t...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314866/ http://dx.doi.org/10.1007/978-3-030-51372-6_11 |
Sumario: | The Kappa biochemistry and the MØD organo-chemistry frameworks are amongst the most intensely developed applications of rewriting theoretical methods in the life sciences to date. A typical feature of these types of rewriting theories is the necessity to implement certain structural constraints on the objects to be rewritten (a protein is empirically found to have a certain signature of sites, a carbon atom can form at most four bonds, ...). In this paper, we contribute to the theoretical foundations of these types of rewriting theory a number of conceptual and technical developments that permit to implement a universal theory of continuous-time Markov chains (CTMCs) for stochastic rewriting systems. Our core mathematical concepts are a novel rule algebra construction for the relevant setting of rewriting rules with conditions, both in Double- and in Sesqui-Pushout semantics, augmented by a suitable stochastic mechanics formalism extension that permits to derive dynamical evolution equations for pattern-counting statistics. |
---|