Cargando…

Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in Drinking Water Samples From a Forcibly Displaced, Densely Populated Community Setting in Bangladesh

Introduction: Community-acquired infections due to extended-spectrum beta-lactamase (ESBL) producing Escherichia coli are rising worldwide, resulting in increased morbidity, mortality, and healthcare costs, especially where poor sanitation and inadequate hygienic practices are very common. Objective...

Descripción completa

Detalles Bibliográficos
Autores principales: Mahmud, Zahid Hayat, Kabir, Mir Himayet, Ali, Sobur, Moniruzzaman, M., Imran, Khan Mohammad, Nafiz, Tanvir Noor, Islam, Md. Shafiqul, Hussain, Arif, Hakim, Syed Adnan Ibna, Worth, Martin, Ahmed, Dilruba, Johnston, Dara, Ahmed, Niyaz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314906/
https://www.ncbi.nlm.nih.gov/pubmed/32626677
http://dx.doi.org/10.3389/fpubh.2020.00228
Descripción
Sumario:Introduction: Community-acquired infections due to extended-spectrum beta-lactamase (ESBL) producing Escherichia coli are rising worldwide, resulting in increased morbidity, mortality, and healthcare costs, especially where poor sanitation and inadequate hygienic practices are very common. Objective: This study was conducted to investigate the prevalence and characterization of multidrug-resistant (MDR) and ESBL-producing E. coli in drinking water samples collected from Rohingya camps, Bangladesh. Methods: A total of 384 E. coli isolates were analyzed in this study, of which 203 were from household or point-of-use (POU) water samples, and 181 were from source water samples. The isolates were tested for virulence genes, ESBL-producing genes, antimicrobial susceptibility by VITEK 2 assay, plasmid profiling, and conjugal transfer of AMR genes. Results: Of the 384 E. coli isolates tested, 17% (66/384) were found to be ESBL producers. The abundance of ESBL-producers in source water contaminated with E. coli was observed to be 14% (27/181), whereas, 19% (39/203) ESBL producers was found in household POU water samples contaminated with E. coli. We detected 71% (47/66) ESBL-E. coli to be MDR. Among these 47 MDR isolates, 20 were resistant to three classes, and 27 were resistant to four different classes of antibiotics. Sixty-four percent (42/66) of the ESBL producing E. coli carried 1 to 7 plasmids ranging from 1 to 103 MDa. Only large plasmids with antibiotic resistance properties were found transferrable via conjugation. Moreover, around 7% (29/384) of E. coli isolates harbored at least one of 10 virulence factors belonging to different E. coli pathotypes. Conclusions: The findings of this study suggest that the drinking water samples analyzed herein could serve as an important source for exposure and dissemination of MDR, ESBL-producing and pathogenic E. coli lineages, which therewith pose a health risk to the displaced Rohingya people residing in the densely populated camps of Bangladesh.