Cargando…
Development of optimal steam explosion pretreatment and highly effective cell factory for bioconversion of grain vinegar residue to butanol
BACKGROUND: The industrial vinegar residue (VR) from solid-state fermentation, mainly cereals and their bran, will be a potential feedstock for future biofuels because of their low cost and easy availability. However, utilization of VR for butanol production has not been as much optimized as other s...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7315531/ https://www.ncbi.nlm.nih.gov/pubmed/32595760 http://dx.doi.org/10.1186/s13068-020-01751-7 |
_version_ | 1783550273284734976 |
---|---|
author | Xia, Menglei Peng, Mingmeng Xue, Danni Cheng, Yang Li, Caixia Wang, Di Lu, Kai Zheng, Yu Xia, Ting song, Jia Wang, Min |
author_facet | Xia, Menglei Peng, Mingmeng Xue, Danni Cheng, Yang Li, Caixia Wang, Di Lu, Kai Zheng, Yu Xia, Ting song, Jia Wang, Min |
author_sort | Xia, Menglei |
collection | PubMed |
description | BACKGROUND: The industrial vinegar residue (VR) from solid-state fermentation, mainly cereals and their bran, will be a potential feedstock for future biofuels because of their low cost and easy availability. However, utilization of VR for butanol production has not been as much optimized as other sources of lignocellulose, which mainly stem from two key elements: (i) high biomass recalcitrance to enzymatic sugar release; (ii) lacking of suitable industrial biobutanol production strain. Though steam explosion has been proved effective for bio-refinery, few studies report SE for VR pretreatment. Much of the relevant knowledge remains unknown. Meanwhile, recent efforts on rational metabolic engineering approaches to increase butanol production in Clostridium strain are quite limited. In this study, we assessed the impact of SE pretreatment, enzymatic hydrolysis kinetics, overall sugar recovery and applied atmospheric and room temperature plasma (ARTP) mutant method for the Clostridium strain development to solve the long-standing problem. RESULTS: SE pretreatment was first performed. At the optimal condition, 29.47% of glucan, 71.62% of xylan and 22.21% of arabinan were depolymerized and obtained in the water extraction. In the sequential enzymatic hydrolysis process, enzymatic hydrolysis rate was increased by 13-fold compared to the VR without pretreatment and 19.60 g glucose, 15.21 g xylose and 5.63 g arabinose can be obtained after the two-step treatment from 100 g VR. Porous properties analysis indicated that steam explosion can effectively generate holes with diameter within 10–20 nm. Statistical analysis proved that enzymatic hydrolysis rate of VR followed the Pseudop-second-order kinetics equation and the relationship between SE severity and enzymatic hydrolysis rate can be well revealed by Boltzmann model. Finally, a superior inhibitor-tolerant strain, Clostridium acetobutylicum Tust-001, was generated with ARTP treatment. The water extraction and enzymolysis liquid gathered were successfully fermented, resulting in butanol titer of 7.98 g/L and 12.59 g/L of ABE. CONCLUSIONS: SE proved to be quite effective for VR due to high fermentable sugar recovery and enzymatic hydrolysate fermentability. Inverse strategy employing ARTP and repetitive domestication for strain breeding is quite feasible, providing us with a new tool for solving the problem in the biofuel fields. |
format | Online Article Text |
id | pubmed-7315531 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-73155312020-06-25 Development of optimal steam explosion pretreatment and highly effective cell factory for bioconversion of grain vinegar residue to butanol Xia, Menglei Peng, Mingmeng Xue, Danni Cheng, Yang Li, Caixia Wang, Di Lu, Kai Zheng, Yu Xia, Ting song, Jia Wang, Min Biotechnol Biofuels Research BACKGROUND: The industrial vinegar residue (VR) from solid-state fermentation, mainly cereals and their bran, will be a potential feedstock for future biofuels because of their low cost and easy availability. However, utilization of VR for butanol production has not been as much optimized as other sources of lignocellulose, which mainly stem from two key elements: (i) high biomass recalcitrance to enzymatic sugar release; (ii) lacking of suitable industrial biobutanol production strain. Though steam explosion has been proved effective for bio-refinery, few studies report SE for VR pretreatment. Much of the relevant knowledge remains unknown. Meanwhile, recent efforts on rational metabolic engineering approaches to increase butanol production in Clostridium strain are quite limited. In this study, we assessed the impact of SE pretreatment, enzymatic hydrolysis kinetics, overall sugar recovery and applied atmospheric and room temperature plasma (ARTP) mutant method for the Clostridium strain development to solve the long-standing problem. RESULTS: SE pretreatment was first performed. At the optimal condition, 29.47% of glucan, 71.62% of xylan and 22.21% of arabinan were depolymerized and obtained in the water extraction. In the sequential enzymatic hydrolysis process, enzymatic hydrolysis rate was increased by 13-fold compared to the VR without pretreatment and 19.60 g glucose, 15.21 g xylose and 5.63 g arabinose can be obtained after the two-step treatment from 100 g VR. Porous properties analysis indicated that steam explosion can effectively generate holes with diameter within 10–20 nm. Statistical analysis proved that enzymatic hydrolysis rate of VR followed the Pseudop-second-order kinetics equation and the relationship between SE severity and enzymatic hydrolysis rate can be well revealed by Boltzmann model. Finally, a superior inhibitor-tolerant strain, Clostridium acetobutylicum Tust-001, was generated with ARTP treatment. The water extraction and enzymolysis liquid gathered were successfully fermented, resulting in butanol titer of 7.98 g/L and 12.59 g/L of ABE. CONCLUSIONS: SE proved to be quite effective for VR due to high fermentable sugar recovery and enzymatic hydrolysate fermentability. Inverse strategy employing ARTP and repetitive domestication for strain breeding is quite feasible, providing us with a new tool for solving the problem in the biofuel fields. BioMed Central 2020-06-24 /pmc/articles/PMC7315531/ /pubmed/32595760 http://dx.doi.org/10.1186/s13068-020-01751-7 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Xia, Menglei Peng, Mingmeng Xue, Danni Cheng, Yang Li, Caixia Wang, Di Lu, Kai Zheng, Yu Xia, Ting song, Jia Wang, Min Development of optimal steam explosion pretreatment and highly effective cell factory for bioconversion of grain vinegar residue to butanol |
title | Development of optimal steam explosion pretreatment and highly effective cell factory for bioconversion of grain vinegar residue to butanol |
title_full | Development of optimal steam explosion pretreatment and highly effective cell factory for bioconversion of grain vinegar residue to butanol |
title_fullStr | Development of optimal steam explosion pretreatment and highly effective cell factory for bioconversion of grain vinegar residue to butanol |
title_full_unstemmed | Development of optimal steam explosion pretreatment and highly effective cell factory for bioconversion of grain vinegar residue to butanol |
title_short | Development of optimal steam explosion pretreatment and highly effective cell factory for bioconversion of grain vinegar residue to butanol |
title_sort | development of optimal steam explosion pretreatment and highly effective cell factory for bioconversion of grain vinegar residue to butanol |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7315531/ https://www.ncbi.nlm.nih.gov/pubmed/32595760 http://dx.doi.org/10.1186/s13068-020-01751-7 |
work_keys_str_mv | AT xiamenglei developmentofoptimalsteamexplosionpretreatmentandhighlyeffectivecellfactoryforbioconversionofgrainvinegarresiduetobutanol AT pengmingmeng developmentofoptimalsteamexplosionpretreatmentandhighlyeffectivecellfactoryforbioconversionofgrainvinegarresiduetobutanol AT xuedanni developmentofoptimalsteamexplosionpretreatmentandhighlyeffectivecellfactoryforbioconversionofgrainvinegarresiduetobutanol AT chengyang developmentofoptimalsteamexplosionpretreatmentandhighlyeffectivecellfactoryforbioconversionofgrainvinegarresiduetobutanol AT licaixia developmentofoptimalsteamexplosionpretreatmentandhighlyeffectivecellfactoryforbioconversionofgrainvinegarresiduetobutanol AT wangdi developmentofoptimalsteamexplosionpretreatmentandhighlyeffectivecellfactoryforbioconversionofgrainvinegarresiduetobutanol AT lukai developmentofoptimalsteamexplosionpretreatmentandhighlyeffectivecellfactoryforbioconversionofgrainvinegarresiduetobutanol AT zhengyu developmentofoptimalsteamexplosionpretreatmentandhighlyeffectivecellfactoryforbioconversionofgrainvinegarresiduetobutanol AT xiating developmentofoptimalsteamexplosionpretreatmentandhighlyeffectivecellfactoryforbioconversionofgrainvinegarresiduetobutanol AT songjia developmentofoptimalsteamexplosionpretreatmentandhighlyeffectivecellfactoryforbioconversionofgrainvinegarresiduetobutanol AT wangmin developmentofoptimalsteamexplosionpretreatmentandhighlyeffectivecellfactoryforbioconversionofgrainvinegarresiduetobutanol |