Cargando…

Diphenylalanine-Derivative Peptide Assemblies with Increased Aromaticity Exhibit Metal-like Rigidity and High Piezoelectricity

[Image: see text] Diphenylalanine (FF) represents the simplest peptide building block that self-assembles into ordered nanostructures with interesting physical properties. Among self-assembled peptide structures, FF nanotubes display notable stiffness and piezoelectric parameters (Young’s modulus =...

Descripción completa

Detalles Bibliográficos
Autores principales: Basavalingappa, Vasantha, Bera, Santu, Xue, Bin, O’Donnell, Joseph, Guerin, Sarah, Cazade, Pierre-Andre, Yuan, Hui, Haq, Ehtsham ul, Silien, Christophe, Tao, Kai, Shimon, Linda J. W., Tofail, Syed A. M., Thompson, Damien, Kolusheva, Sofiya, Yang, Rusen, Cao, Yi, Gazit, Ehud
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7315635/
https://www.ncbi.nlm.nih.gov/pubmed/32441511
http://dx.doi.org/10.1021/acsnano.0c01654
Descripción
Sumario:[Image: see text] Diphenylalanine (FF) represents the simplest peptide building block that self-assembles into ordered nanostructures with interesting physical properties. Among self-assembled peptide structures, FF nanotubes display notable stiffness and piezoelectric parameters (Young’s modulus = 19–27 GPa, strain coefficient d(33) = 18 pC/N). Yet, inorganic alternatives remain the major materials of choice for many applications due to higher stiffness and piezoelectricity. Here, aiming to broaden the applications of the FF motif in materials chemistry, we designed three phenyl-rich dipeptides based on the β,β-diphenyl-Ala-OH (Dip) unit: Dip-Dip, cyclo-Dip-Dip, and tert-butyloxycarbonyl (Boc)-Dip-Dip. The doubled number of aromatic groups per unit, compared to FF, produced a dense aromatic zipper network with a dramatically improved Young’s modulus of ∼70 GPa, which is comparable to aluminum. The piezoelectric strain coefficient d(33) of ∼73 pC/N of such assembly exceeds that of poled polyvinylidene-fluoride (PVDF) polymers and compares well to that of lead zirconium titanate (PZT) thin films and ribbons. The rationally designed π–π assemblies show a voltage coefficient of 2–3 Vm/N, an order of magnitude higher than PVDF, improved thermal stability up to 360 °C (∼60 °C higher than FF), and useful photoluminescence with wide-range excitation-dependent emission in the visible region. Our data demonstrate that aromatic groups improve the rigidity and piezoelectricity of organic self-assembled materials for numerous applications.