Cargando…

High-Mobility In(2)O(3):H Electrodes for Four-Terminal Perovskite/CuInSe(2) Tandem Solar Cells

[Image: see text] Four-terminal (4-T) tandem solar cells (e.g., perovskite/CuInSe(2) (CIS)) rely on three transparent conductive oxide electrodes with high mobility and low free carrier absorption in the near-infrared (NIR) region. In this work, a reproducible In(2)O(3):H (IO:H) film deposition proc...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Yan, Feurer, Thomas, Carron, Romain, Sevilla, Galo Torres, Moser, Thierry, Pisoni, Stefano, Erni, Rolf, Rossell, Marta D., Ochoa, Mario, Hertwig, Ramis, Tiwari, Ayodhya N., Fu, Fan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7315637/
https://www.ncbi.nlm.nih.gov/pubmed/32459466
http://dx.doi.org/10.1021/acsnano.0c03265
_version_ 1783550297542492160
author Jiang, Yan
Feurer, Thomas
Carron, Romain
Sevilla, Galo Torres
Moser, Thierry
Pisoni, Stefano
Erni, Rolf
Rossell, Marta D.
Ochoa, Mario
Hertwig, Ramis
Tiwari, Ayodhya N.
Fu, Fan
author_facet Jiang, Yan
Feurer, Thomas
Carron, Romain
Sevilla, Galo Torres
Moser, Thierry
Pisoni, Stefano
Erni, Rolf
Rossell, Marta D.
Ochoa, Mario
Hertwig, Ramis
Tiwari, Ayodhya N.
Fu, Fan
author_sort Jiang, Yan
collection PubMed
description [Image: see text] Four-terminal (4-T) tandem solar cells (e.g., perovskite/CuInSe(2) (CIS)) rely on three transparent conductive oxide electrodes with high mobility and low free carrier absorption in the near-infrared (NIR) region. In this work, a reproducible In(2)O(3):H (IO:H) film deposition process is developed by independently controlling H(2) and O(2) gas flows during magnetron sputtering, yielding a high mobility value up to 129 cm(2) V(–1) s(–1) in highly crystallized IO:H films annealed at 230 °C. Optimization of H(2) and O(2) partial pressures further decreases the crystallization temperature to 130 °C. By using a highly crystallized IO:H film as the front electrode in NIR-transparent perovskite solar cell (PSC), a 17.3% steady-state power conversion efficiency and an 82% average transmittance between 820 and 1300 nm are achieved. In combination with an 18.1% CIS solar cell, a 24.6% perovskite/CIS tandem device in 4-T configuration is demonstrated. Optical analysis suggests that an amorphous IO:H film (without postannealing) and a partially crystallized IO:H film (postannealed at 150 °C), when used as a rear electrode in a NIR-transparent PSC and a front electrode in a CIS solar cell, respectively, can outperform the widely used indium-doped zinc oxide (IZO) electrodes, leading to a 1.38 mA/cm(2) short-circuit current (J(sc)) gain in the bottom CIS cell of 4-T tandems.
format Online
Article
Text
id pubmed-7315637
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-73156372020-06-26 High-Mobility In(2)O(3):H Electrodes for Four-Terminal Perovskite/CuInSe(2) Tandem Solar Cells Jiang, Yan Feurer, Thomas Carron, Romain Sevilla, Galo Torres Moser, Thierry Pisoni, Stefano Erni, Rolf Rossell, Marta D. Ochoa, Mario Hertwig, Ramis Tiwari, Ayodhya N. Fu, Fan ACS Nano [Image: see text] Four-terminal (4-T) tandem solar cells (e.g., perovskite/CuInSe(2) (CIS)) rely on three transparent conductive oxide electrodes with high mobility and low free carrier absorption in the near-infrared (NIR) region. In this work, a reproducible In(2)O(3):H (IO:H) film deposition process is developed by independently controlling H(2) and O(2) gas flows during magnetron sputtering, yielding a high mobility value up to 129 cm(2) V(–1) s(–1) in highly crystallized IO:H films annealed at 230 °C. Optimization of H(2) and O(2) partial pressures further decreases the crystallization temperature to 130 °C. By using a highly crystallized IO:H film as the front electrode in NIR-transparent perovskite solar cell (PSC), a 17.3% steady-state power conversion efficiency and an 82% average transmittance between 820 and 1300 nm are achieved. In combination with an 18.1% CIS solar cell, a 24.6% perovskite/CIS tandem device in 4-T configuration is demonstrated. Optical analysis suggests that an amorphous IO:H film (without postannealing) and a partially crystallized IO:H film (postannealed at 150 °C), when used as a rear electrode in a NIR-transparent PSC and a front electrode in a CIS solar cell, respectively, can outperform the widely used indium-doped zinc oxide (IZO) electrodes, leading to a 1.38 mA/cm(2) short-circuit current (J(sc)) gain in the bottom CIS cell of 4-T tandems. American Chemical Society 2020-05-27 2020-06-23 /pmc/articles/PMC7315637/ /pubmed/32459466 http://dx.doi.org/10.1021/acsnano.0c03265 Text en Copyright © 2020 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Jiang, Yan
Feurer, Thomas
Carron, Romain
Sevilla, Galo Torres
Moser, Thierry
Pisoni, Stefano
Erni, Rolf
Rossell, Marta D.
Ochoa, Mario
Hertwig, Ramis
Tiwari, Ayodhya N.
Fu, Fan
High-Mobility In(2)O(3):H Electrodes for Four-Terminal Perovskite/CuInSe(2) Tandem Solar Cells
title High-Mobility In(2)O(3):H Electrodes for Four-Terminal Perovskite/CuInSe(2) Tandem Solar Cells
title_full High-Mobility In(2)O(3):H Electrodes for Four-Terminal Perovskite/CuInSe(2) Tandem Solar Cells
title_fullStr High-Mobility In(2)O(3):H Electrodes for Four-Terminal Perovskite/CuInSe(2) Tandem Solar Cells
title_full_unstemmed High-Mobility In(2)O(3):H Electrodes for Four-Terminal Perovskite/CuInSe(2) Tandem Solar Cells
title_short High-Mobility In(2)O(3):H Electrodes for Four-Terminal Perovskite/CuInSe(2) Tandem Solar Cells
title_sort high-mobility in(2)o(3):h electrodes for four-terminal perovskite/cuinse(2) tandem solar cells
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7315637/
https://www.ncbi.nlm.nih.gov/pubmed/32459466
http://dx.doi.org/10.1021/acsnano.0c03265
work_keys_str_mv AT jiangyan highmobilityin2o3helectrodesforfourterminalperovskitecuinse2tandemsolarcells
AT feurerthomas highmobilityin2o3helectrodesforfourterminalperovskitecuinse2tandemsolarcells
AT carronromain highmobilityin2o3helectrodesforfourterminalperovskitecuinse2tandemsolarcells
AT sevillagalotorres highmobilityin2o3helectrodesforfourterminalperovskitecuinse2tandemsolarcells
AT moserthierry highmobilityin2o3helectrodesforfourterminalperovskitecuinse2tandemsolarcells
AT pisonistefano highmobilityin2o3helectrodesforfourterminalperovskitecuinse2tandemsolarcells
AT ernirolf highmobilityin2o3helectrodesforfourterminalperovskitecuinse2tandemsolarcells
AT rossellmartad highmobilityin2o3helectrodesforfourterminalperovskitecuinse2tandemsolarcells
AT ochoamario highmobilityin2o3helectrodesforfourterminalperovskitecuinse2tandemsolarcells
AT hertwigramis highmobilityin2o3helectrodesforfourterminalperovskitecuinse2tandemsolarcells
AT tiwariayodhyan highmobilityin2o3helectrodesforfourterminalperovskitecuinse2tandemsolarcells
AT fufan highmobilityin2o3helectrodesforfourterminalperovskitecuinse2tandemsolarcells