Cargando…

Ultralong Spin Lifetime in Light Alkali Atom Doped Graphene

[Image: see text] Today’s great challenges of energy and informational technologies are addressed with a singular compound, Li- and Na-doped few-layer graphene. All that is impossible for graphite (homogeneous and high-level Na doping) and unstable for single-layer graphene works very well for this...

Descripción completa

Detalles Bibliográficos
Autores principales: Márkus, B. G., Szirmai, P., Edelthalhammer, K. F., Eckerlein, P., Hirsch, A., Hauke, F., Nemes, N. M., Chacón-Torres, Julio C., Náfrádi, B., Forró, L., Pichler, T., Simon, F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7315639/
https://www.ncbi.nlm.nih.gov/pubmed/32484657
http://dx.doi.org/10.1021/acsnano.0c03191
_version_ 1783550298056294400
author Márkus, B. G.
Szirmai, P.
Edelthalhammer, K. F.
Eckerlein, P.
Hirsch, A.
Hauke, F.
Nemes, N. M.
Chacón-Torres, Julio C.
Náfrádi, B.
Forró, L.
Pichler, T.
Simon, F.
author_facet Márkus, B. G.
Szirmai, P.
Edelthalhammer, K. F.
Eckerlein, P.
Hirsch, A.
Hauke, F.
Nemes, N. M.
Chacón-Torres, Julio C.
Náfrádi, B.
Forró, L.
Pichler, T.
Simon, F.
author_sort Márkus, B. G.
collection PubMed
description [Image: see text] Today’s great challenges of energy and informational technologies are addressed with a singular compound, Li- and Na-doped few-layer graphene. All that is impossible for graphite (homogeneous and high-level Na doping) and unstable for single-layer graphene works very well for this structure. The transformation of the Raman G line to a Fano line shape and the emergence of strong, metallic-like electron spin resonance (ESR) modes attest the high level of graphene doping in liquid ammonia for both kinds of alkali atoms. The spin-relaxation time in our materials, deduced from the ESR line width, is 6–8 ns, which is comparable to the longest values found in spin-transport experiments on ultrahigh-mobility graphene flakes. This could qualify our material as a promising candidate in spintronics devices. On the other hand, the successful sodium doping, this being a highly abundant metal, could be an encouraging alternative to lithium batteries.
format Online
Article
Text
id pubmed-7315639
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-73156392020-06-26 Ultralong Spin Lifetime in Light Alkali Atom Doped Graphene Márkus, B. G. Szirmai, P. Edelthalhammer, K. F. Eckerlein, P. Hirsch, A. Hauke, F. Nemes, N. M. Chacón-Torres, Julio C. Náfrádi, B. Forró, L. Pichler, T. Simon, F. ACS Nano [Image: see text] Today’s great challenges of energy and informational technologies are addressed with a singular compound, Li- and Na-doped few-layer graphene. All that is impossible for graphite (homogeneous and high-level Na doping) and unstable for single-layer graphene works very well for this structure. The transformation of the Raman G line to a Fano line shape and the emergence of strong, metallic-like electron spin resonance (ESR) modes attest the high level of graphene doping in liquid ammonia for both kinds of alkali atoms. The spin-relaxation time in our materials, deduced from the ESR line width, is 6–8 ns, which is comparable to the longest values found in spin-transport experiments on ultrahigh-mobility graphene flakes. This could qualify our material as a promising candidate in spintronics devices. On the other hand, the successful sodium doping, this being a highly abundant metal, could be an encouraging alternative to lithium batteries. American Chemical Society 2020-06-02 2020-06-23 /pmc/articles/PMC7315639/ /pubmed/32484657 http://dx.doi.org/10.1021/acsnano.0c03191 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Márkus, B. G.
Szirmai, P.
Edelthalhammer, K. F.
Eckerlein, P.
Hirsch, A.
Hauke, F.
Nemes, N. M.
Chacón-Torres, Julio C.
Náfrádi, B.
Forró, L.
Pichler, T.
Simon, F.
Ultralong Spin Lifetime in Light Alkali Atom Doped Graphene
title Ultralong Spin Lifetime in Light Alkali Atom Doped Graphene
title_full Ultralong Spin Lifetime in Light Alkali Atom Doped Graphene
title_fullStr Ultralong Spin Lifetime in Light Alkali Atom Doped Graphene
title_full_unstemmed Ultralong Spin Lifetime in Light Alkali Atom Doped Graphene
title_short Ultralong Spin Lifetime in Light Alkali Atom Doped Graphene
title_sort ultralong spin lifetime in light alkali atom doped graphene
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7315639/
https://www.ncbi.nlm.nih.gov/pubmed/32484657
http://dx.doi.org/10.1021/acsnano.0c03191
work_keys_str_mv AT markusbg ultralongspinlifetimeinlightalkaliatomdopedgraphene
AT szirmaip ultralongspinlifetimeinlightalkaliatomdopedgraphene
AT edelthalhammerkf ultralongspinlifetimeinlightalkaliatomdopedgraphene
AT eckerleinp ultralongspinlifetimeinlightalkaliatomdopedgraphene
AT hirscha ultralongspinlifetimeinlightalkaliatomdopedgraphene
AT haukef ultralongspinlifetimeinlightalkaliatomdopedgraphene
AT nemesnm ultralongspinlifetimeinlightalkaliatomdopedgraphene
AT chacontorresjulioc ultralongspinlifetimeinlightalkaliatomdopedgraphene
AT nafradib ultralongspinlifetimeinlightalkaliatomdopedgraphene
AT forrol ultralongspinlifetimeinlightalkaliatomdopedgraphene
AT pichlert ultralongspinlifetimeinlightalkaliatomdopedgraphene
AT simonf ultralongspinlifetimeinlightalkaliatomdopedgraphene