Cargando…
Airborne pathogen projection during ophthalmic examination
PURPOSE: Microscale droplets act as coronaviruses (CoV) carriers in the air when released from an infected person and may infect others during close contact such as ophthalmic examination. The main objective of the present work is to demonstrate how CoV deposited droplets are projected during biomic...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7315910/ https://www.ncbi.nlm.nih.gov/pubmed/32588166 http://dx.doi.org/10.1007/s00417-020-04815-4 |
_version_ | 1783550342793789440 |
---|---|
author | Bostanci Ceran, Basak Karakoç, Alp Taciroğlu, Ertuğrul |
author_facet | Bostanci Ceran, Basak Karakoç, Alp Taciroğlu, Ertuğrul |
author_sort | Bostanci Ceran, Basak |
collection | PubMed |
description | PURPOSE: Microscale droplets act as coronaviruses (CoV) carriers in the air when released from an infected person and may infect others during close contact such as ophthalmic examination. The main objective of the present work is to demonstrate how CoV deposited droplets are projected during biomicroscopy and to discuss what kind of precautions should be taken in ophthalmic practice. METHODS: A coupled fluid-structure system comprising smoothed particle hydrodynamics and the finite element method has been built to assess the projection of droplets spreading from an infected person. Different conditions based on the maximum exit flow velocity from the infector’s mouth during the ophthalmic examination were modeled. RESULTS: During exhalation, for which the exit flow is ~ 1000 mm/s, the average horizontal distance of the flow front was ~ 200 mm while individual particles can reach up to ~ 500 mm. In case of coughing or sneezing (corresponding to an exit flow of ~ 12,000 mm/s), the average horizontal distance of the flow front was ~ 1300 mm. CONCLUSION: During the ophthalmic examination, the proximity to the patient’s nose and mouth was observed to be less than the horizontal distance of flow front particles. Even though mounted breath shields are used, particles flew beyond the shield and contaminate the ophthalmologist. Compared with the current protective breath shields, the use of a larger shield with a minimum radius of 18 cm is needed to decrease viral transmission. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00417-020-04815-4) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-7315910 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-73159102020-06-25 Airborne pathogen projection during ophthalmic examination Bostanci Ceran, Basak Karakoç, Alp Taciroğlu, Ertuğrul Graefes Arch Clin Exp Ophthalmol Miscellaneous PURPOSE: Microscale droplets act as coronaviruses (CoV) carriers in the air when released from an infected person and may infect others during close contact such as ophthalmic examination. The main objective of the present work is to demonstrate how CoV deposited droplets are projected during biomicroscopy and to discuss what kind of precautions should be taken in ophthalmic practice. METHODS: A coupled fluid-structure system comprising smoothed particle hydrodynamics and the finite element method has been built to assess the projection of droplets spreading from an infected person. Different conditions based on the maximum exit flow velocity from the infector’s mouth during the ophthalmic examination were modeled. RESULTS: During exhalation, for which the exit flow is ~ 1000 mm/s, the average horizontal distance of the flow front was ~ 200 mm while individual particles can reach up to ~ 500 mm. In case of coughing or sneezing (corresponding to an exit flow of ~ 12,000 mm/s), the average horizontal distance of the flow front was ~ 1300 mm. CONCLUSION: During the ophthalmic examination, the proximity to the patient’s nose and mouth was observed to be less than the horizontal distance of flow front particles. Even though mounted breath shields are used, particles flew beyond the shield and contaminate the ophthalmologist. Compared with the current protective breath shields, the use of a larger shield with a minimum radius of 18 cm is needed to decrease viral transmission. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00417-020-04815-4) contains supplementary material, which is available to authorized users. Springer Berlin Heidelberg 2020-06-25 2020 /pmc/articles/PMC7315910/ /pubmed/32588166 http://dx.doi.org/10.1007/s00417-020-04815-4 Text en © Springer-Verlag GmbH Germany, part of Springer Nature 2020 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Miscellaneous Bostanci Ceran, Basak Karakoç, Alp Taciroğlu, Ertuğrul Airborne pathogen projection during ophthalmic examination |
title | Airborne pathogen projection during ophthalmic examination |
title_full | Airborne pathogen projection during ophthalmic examination |
title_fullStr | Airborne pathogen projection during ophthalmic examination |
title_full_unstemmed | Airborne pathogen projection during ophthalmic examination |
title_short | Airborne pathogen projection during ophthalmic examination |
title_sort | airborne pathogen projection during ophthalmic examination |
topic | Miscellaneous |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7315910/ https://www.ncbi.nlm.nih.gov/pubmed/32588166 http://dx.doi.org/10.1007/s00417-020-04815-4 |
work_keys_str_mv | AT bostanciceranbasak airbornepathogenprojectionduringophthalmicexamination AT karakocalp airbornepathogenprojectionduringophthalmicexamination AT tacirogluertugrul airbornepathogenprojectionduringophthalmicexamination |